Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=5\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=5\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x=3125x\times 5^{-y}
Calculate 5 to the power of 5 and get 3125.
x-3125x\times 5^{-y}=0
Subtract 3125x\times 5^{-y} from both sides.
\left(1-3125\times 5^{-y}\right)x=0
Combine all terms containing x.
\left(-\frac{3125}{5^{y}}+1\right)x=0
The equation is in standard form.
x=0
Divide 0 by 1-3125\times 5^{-y}.
x=3125x\times 5^{-y}
Calculate 5 to the power of 5 and get 3125.
3125x\times 5^{-y}=x
Swap sides so that all variable terms are on the left hand side.
5^{-y}=\frac{1}{3125}
Divide both sides by 3125x.
\log(5^{-y})=\log(\frac{1}{3125})
Take the logarithm of both sides of the equation.
-y\log(5)=\log(\frac{1}{3125})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-y=\frac{\log(\frac{1}{3125})}{\log(5)}
Divide both sides by \log(5).
-y=\log_{5}\left(\frac{1}{3125}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
y=-\frac{5}{-1}
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}