Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+10=\sqrt{x}
Subtract -10 from both sides of the equation.
\left(x+10\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+20x+100=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
x^{2}+20x+100=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+20x+100-x=0
Subtract x from both sides.
x^{2}+19x+100=0
Combine 20x and -x to get 19x.
x=\frac{-19±\sqrt{19^{2}-4\times 100}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 100}}{2}
Square 19.
x=\frac{-19±\sqrt{361-400}}{2}
Multiply -4 times 100.
x=\frac{-19±\sqrt{-39}}{2}
Add 361 to -400.
x=\frac{-19±\sqrt{39}i}{2}
Take the square root of -39.
x=\frac{-19+\sqrt{39}i}{2}
Now solve the equation x=\frac{-19±\sqrt{39}i}{2} when ± is plus. Add -19 to i\sqrt{39}.
x=\frac{-\sqrt{39}i-19}{2}
Now solve the equation x=\frac{-19±\sqrt{39}i}{2} when ± is minus. Subtract i\sqrt{39} from -19.
x=\frac{-19+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-19}{2}
The equation is now solved.
\frac{-19+\sqrt{39}i}{2}=\sqrt{\frac{-19+\sqrt{39}i}{2}}-10
Substitute \frac{-19+\sqrt{39}i}{2} for x in the equation x=\sqrt{x}-10.
-\frac{19}{2}+\frac{1}{2}i\times 39^{\frac{1}{2}}=-\frac{19}{2}+\frac{1}{2}i\times 39^{\frac{1}{2}}
Simplify. The value x=\frac{-19+\sqrt{39}i}{2} satisfies the equation.
\frac{-\sqrt{39}i-19}{2}=\sqrt{\frac{-\sqrt{39}i-19}{2}}-10
Substitute \frac{-\sqrt{39}i-19}{2} for x in the equation x=\sqrt{x}-10.
-\frac{1}{2}i\times 39^{\frac{1}{2}}-\frac{19}{2}=-\frac{21}{2}+\frac{1}{2}i\times 39^{\frac{1}{2}}
Simplify. The value x=\frac{-\sqrt{39}i-19}{2} does not satisfy the equation.
x=\frac{-19+\sqrt{39}i}{2}
Equation x+10=\sqrt{x} has a unique solution.