Solve for x
x=3
Graph
Share
Copied to clipboard
x-3=\sqrt{9-x^{2}}
Subtract 3 from both sides of the equation.
\left(x-3\right)^{2}=\left(\sqrt{9-x^{2}}\right)^{2}
Square both sides of the equation.
x^{2}-6x+9=\left(\sqrt{9-x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=9-x^{2}
Calculate \sqrt{9-x^{2}} to the power of 2 and get 9-x^{2}.
x^{2}-6x+9-9=-x^{2}
Subtract 9 from both sides.
x^{2}-6x=-x^{2}
Subtract 9 from 9 to get 0.
x^{2}-6x+x^{2}=0
Add x^{2} to both sides.
2x^{2}-6x=0
Combine x^{2} and x^{2} to get 2x^{2}.
x\left(2x-6\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and 2x-6=0.
0=\sqrt{9-0^{2}}+3
Substitute 0 for x in the equation x=\sqrt{9-x^{2}}+3.
0=6
Simplify. The value x=0 does not satisfy the equation.
3=\sqrt{9-3^{2}}+3
Substitute 3 for x in the equation x=\sqrt{9-x^{2}}+3.
3=3
Simplify. The value x=3 satisfies the equation.
x=3
Equation x-3=\sqrt{9-x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}