Solve for x
x=\frac{\sqrt{3}}{3}\approx 0.577350269
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{4x^{2}-1}\right)^{2}
Square both sides of the equation.
x^{2}=4x^{2}-1
Calculate \sqrt{4x^{2}-1} to the power of 2 and get 4x^{2}-1.
x^{2}-4x^{2}=-1
Subtract 4x^{2} from both sides.
-3x^{2}=-1
Combine x^{2} and -4x^{2} to get -3x^{2}.
x^{2}=\frac{-1}{-3}
Divide both sides by -3.
x^{2}=\frac{1}{3}
Fraction \frac{-1}{-3} can be simplified to \frac{1}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Take the square root of both sides of the equation.
\frac{\sqrt{3}}{3}=\sqrt{4\times \left(\frac{\sqrt{3}}{3}\right)^{2}-1}
Substitute \frac{\sqrt{3}}{3} for x in the equation x=\sqrt{4x^{2}-1}.
\frac{1}{3}\times 3^{\frac{1}{2}}=\frac{1}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{3}}{3} satisfies the equation.
-\frac{\sqrt{3}}{3}=\sqrt{4\left(-\frac{\sqrt{3}}{3}\right)^{2}-1}
Substitute -\frac{\sqrt{3}}{3} for x in the equation x=\sqrt{4x^{2}-1}.
-\frac{1}{3}\times 3^{\frac{1}{2}}=\frac{1}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{3}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{3}}{3}
Equation x=\sqrt{4x^{2}-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}