Solve for x
x=-\frac{2}{15}\approx -0.133333333
Solve for x (complex solution)
x=\frac{2e^{\frac{i\pi }{3}}}{15}\approx 0.066666667+0.115470054i
Assign x (complex solution)
x≔\frac{2e^{\frac{i\pi }{3}}}{15}
Assign x
x≔-\frac{2}{15}
Graph
Share
Copied to clipboard
x=\frac{-\frac{3}{5}\times \frac{1}{\sqrt{16}}}{\sqrt{\frac{1\times 64+17}{64}}}
Calculate \sqrt[3]{-0.216} and get -\frac{3}{5}.
x=\frac{-\frac{3}{5}\times \frac{1}{4}}{\sqrt{\frac{1\times 64+17}{64}}}
Calculate the square root of 16 and get 4.
x=\frac{-\frac{3}{20}}{\sqrt{\frac{1\times 64+17}{64}}}
Multiply -\frac{3}{5} and \frac{1}{4} to get -\frac{3}{20}.
x=\frac{-\frac{3}{20}}{\sqrt{\frac{64+17}{64}}}
Multiply 1 and 64 to get 64.
x=\frac{-\frac{3}{20}}{\sqrt{\frac{81}{64}}}
Add 64 and 17 to get 81.
x=\frac{-\frac{3}{20}}{\frac{9}{8}}
Rewrite the square root of the division \frac{81}{64} as the division of square roots \frac{\sqrt{81}}{\sqrt{64}}. Take the square root of both numerator and denominator.
x=-\frac{3}{20}\times \frac{8}{9}
Divide -\frac{3}{20} by \frac{9}{8} by multiplying -\frac{3}{20} by the reciprocal of \frac{9}{8}.
x=-\frac{2}{15}
Multiply -\frac{3}{20} and \frac{8}{9} to get -\frac{2}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}