Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x=\frac{1}{2}y-\frac{1}{2}z
Divide each term of y-z by 2 to get \frac{1}{2}y-\frac{1}{2}z.
\frac{1}{2}y-\frac{1}{2}z=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}y=x+\frac{1}{2}z
Add \frac{1}{2}z to both sides.
\frac{1}{2}y=\frac{z}{2}+x
The equation is in standard form.
\frac{\frac{1}{2}y}{\frac{1}{2}}=\frac{\frac{z}{2}+x}{\frac{1}{2}}
Multiply both sides by 2.
y=\frac{\frac{z}{2}+x}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y=2x+z
Divide x+\frac{z}{2} by \frac{1}{2} by multiplying x+\frac{z}{2} by the reciprocal of \frac{1}{2}.
x=\frac{1}{2}y-\frac{1}{2}z
Divide each term of y-z by 2 to get \frac{1}{2}y-\frac{1}{2}z.