Solve for x (complex solution)
\left\{\begin{matrix}x=0\text{, }&t\neq -2\\x\in \mathrm{C}\text{, }&t=-\frac{5}{2}\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=-\frac{5}{2}=-2.5\text{, }&\text{unconditionally}\\t\neq -2\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=0\text{, }&t\neq -2\\x\in \mathrm{R}\text{, }&t=-\frac{5}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
x-\frac{x}{-2t-4}=0
Subtract \frac{x}{-2t-4} from both sides.
x-\frac{x}{2\left(-t-2\right)}=0
Factor -2t-4.
\frac{x\times 2\left(-t-2\right)}{2\left(-t-2\right)}-\frac{x}{2\left(-t-2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2\left(-t-2\right)}{2\left(-t-2\right)}.
\frac{x\times 2\left(-t-2\right)-x}{2\left(-t-2\right)}=0
Since \frac{x\times 2\left(-t-2\right)}{2\left(-t-2\right)} and \frac{x}{2\left(-t-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2xt-4x-x}{2\left(-t-2\right)}=0
Do the multiplications in x\times 2\left(-t-2\right)-x.
\frac{-2xt-5x}{2\left(-t-2\right)}=0
Combine like terms in -2xt-4x-x.
-2xt-5x=0
Multiply both sides of the equation by 2\left(-t-2\right).
\left(-2t-5\right)x=0
Combine all terms containing x.
x=0
Divide 0 by -2t-5.
x\times 2\left(-t-2\right)=x
Variable t cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 2\left(-t-2\right).
-2xt-2x\times 2=x
Use the distributive property to multiply x\times 2 by -t-2.
-2xt-4x=x
Multiply -2 and 2 to get -4.
-2xt=x+4x
Add 4x to both sides.
-2xt=5x
Combine x and 4x to get 5x.
\left(-2x\right)t=5x
The equation is in standard form.
\frac{\left(-2x\right)t}{-2x}=\frac{5x}{-2x}
Divide both sides by -2x.
t=\frac{5x}{-2x}
Dividing by -2x undoes the multiplication by -2x.
t=-\frac{5}{2}
Divide 5x by -2x.
x-\frac{x}{-2t-4}=0
Subtract \frac{x}{-2t-4} from both sides.
x-\frac{x}{2\left(-t-2\right)}=0
Factor -2t-4.
\frac{x\times 2\left(-t-2\right)}{2\left(-t-2\right)}-\frac{x}{2\left(-t-2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2\left(-t-2\right)}{2\left(-t-2\right)}.
\frac{x\times 2\left(-t-2\right)-x}{2\left(-t-2\right)}=0
Since \frac{x\times 2\left(-t-2\right)}{2\left(-t-2\right)} and \frac{x}{2\left(-t-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2xt-4x-x}{2\left(-t-2\right)}=0
Do the multiplications in x\times 2\left(-t-2\right)-x.
\frac{-2xt-5x}{2\left(-t-2\right)}=0
Combine like terms in -2xt-4x-x.
-2xt-5x=0
Multiply both sides of the equation by 2\left(-t-2\right).
\left(-2t-5\right)x=0
Combine all terms containing x.
x=0
Divide 0 by -2t-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}