Solve for x
x=3\sqrt{15}\approx 11.618950039
x=-3\sqrt{15}\approx -11.618950039
Graph
Share
Copied to clipboard
x=\frac{90\times 2}{2x}+\frac{90}{2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 2x is 2x. Multiply \frac{90}{x} times \frac{2}{2}.
x=\frac{90\times 2+90}{2x}
Since \frac{90\times 2}{2x} and \frac{90}{2x} have the same denominator, add them by adding their numerators.
x=\frac{180+90}{2x}
Do the multiplications in 90\times 2+90.
x=\frac{270}{2x}
Do the calculations in 180+90.
x-\frac{270}{2x}=0
Subtract \frac{270}{2x} from both sides.
\frac{x\times 2x}{2x}-\frac{270}{2x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
\frac{x\times 2x-270}{2x}=0
Since \frac{x\times 2x}{2x} and \frac{270}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-270}{2x}=0
Do the multiplications in x\times 2x-270.
\frac{2\left(x^{2}-135\right)}{2x}=0
Factor the expressions that are not already factored in \frac{2x^{2}-270}{2x}.
\frac{x^{2}-135}{x}=0
Cancel out 2 in both numerator and denominator.
x^{2}-135=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}=135
Add 135 to both sides. Anything plus zero gives itself.
x=3\sqrt{15} x=-3\sqrt{15}
Take the square root of both sides of the equation.
x=\frac{90\times 2}{2x}+\frac{90}{2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 2x is 2x. Multiply \frac{90}{x} times \frac{2}{2}.
x=\frac{90\times 2+90}{2x}
Since \frac{90\times 2}{2x} and \frac{90}{2x} have the same denominator, add them by adding their numerators.
x=\frac{180+90}{2x}
Do the multiplications in 90\times 2+90.
x=\frac{270}{2x}
Do the calculations in 180+90.
x-\frac{270}{2x}=0
Subtract \frac{270}{2x} from both sides.
\frac{x\times 2x}{2x}-\frac{270}{2x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2x}{2x}.
\frac{x\times 2x-270}{2x}=0
Since \frac{x\times 2x}{2x} and \frac{270}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-270}{2x}=0
Do the multiplications in x\times 2x-270.
\frac{2\left(x^{2}-135\right)}{2x}=0
Factor the expressions that are not already factored in \frac{2x^{2}-270}{2x}.
\frac{x^{2}-135}{x}=0
Cancel out 2 in both numerator and denominator.
x^{2}-135=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x=\frac{0±\sqrt{0^{2}-4\left(-135\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-135\right)}}{2}
Square 0.
x=\frac{0±\sqrt{540}}{2}
Multiply -4 times -135.
x=\frac{0±6\sqrt{15}}{2}
Take the square root of 540.
x=3\sqrt{15}
Now solve the equation x=\frac{0±6\sqrt{15}}{2} when ± is plus.
x=-3\sqrt{15}
Now solve the equation x=\frac{0±6\sqrt{15}}{2} when ± is minus.
x=3\sqrt{15} x=-3\sqrt{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}