Solve for x
x=\frac{-2\sqrt{29}-4}{5}\approx -2.954065923
Assign x
x≔\frac{-2\sqrt{29}-4}{5}
Graph
Share
Copied to clipboard
x=\frac{50\left(10+5\sqrt{29}\right)}{\left(10-5\sqrt{29}\right)\left(10+5\sqrt{29}\right)}
Rationalize the denominator of \frac{50}{10-5\sqrt{29}} by multiplying numerator and denominator by 10+5\sqrt{29}.
x=\frac{50\left(10+5\sqrt{29}\right)}{10^{2}-\left(-5\sqrt{29}\right)^{2}}
Consider \left(10-5\sqrt{29}\right)\left(10+5\sqrt{29}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{50\left(10+5\sqrt{29}\right)}{100-\left(-5\sqrt{29}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
x=\frac{50\left(10+5\sqrt{29}\right)}{100-\left(-5\right)^{2}\left(\sqrt{29}\right)^{2}}
Expand \left(-5\sqrt{29}\right)^{2}.
x=\frac{50\left(10+5\sqrt{29}\right)}{100-25\left(\sqrt{29}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
x=\frac{50\left(10+5\sqrt{29}\right)}{100-25\times 29}
The square of \sqrt{29} is 29.
x=\frac{50\left(10+5\sqrt{29}\right)}{100-725}
Multiply 25 and 29 to get 725.
x=\frac{50\left(10+5\sqrt{29}\right)}{-625}
Subtract 725 from 100 to get -625.
x=-\frac{2}{25}\left(10+5\sqrt{29}\right)
Divide 50\left(10+5\sqrt{29}\right) by -625 to get -\frac{2}{25}\left(10+5\sqrt{29}\right).
x=-\frac{2}{25}\times 10-\frac{2}{25}\times 5\sqrt{29}
Use the distributive property to multiply -\frac{2}{25} by 10+5\sqrt{29}.
x=\frac{-2\times 10}{25}-\frac{2}{25}\times 5\sqrt{29}
Express -\frac{2}{25}\times 10 as a single fraction.
x=\frac{-20}{25}-\frac{2}{25}\times 5\sqrt{29}
Multiply -2 and 10 to get -20.
x=-\frac{4}{5}-\frac{2}{25}\times 5\sqrt{29}
Reduce the fraction \frac{-20}{25} to lowest terms by extracting and canceling out 5.
x=-\frac{4}{5}+\frac{-2\times 5}{25}\sqrt{29}
Express -\frac{2}{25}\times 5 as a single fraction.
x=-\frac{4}{5}+\frac{-10}{25}\sqrt{29}
Multiply -2 and 5 to get -10.
x=-\frac{4}{5}-\frac{2}{5}\sqrt{29}
Reduce the fraction \frac{-10}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}