Solve for n
n=-\frac{3x-2}{x-40}
x\neq 40
Solve for x
x=\frac{2\left(20n+1\right)}{n+3}
n\neq -3
Graph
Share
Copied to clipboard
x\left(n+3\right)=40n+2
Variable n cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by n+3.
xn+3x=40n+2
Use the distributive property to multiply x by n+3.
xn+3x-40n=2
Subtract 40n from both sides.
xn-40n=2-3x
Subtract 3x from both sides.
\left(x-40\right)n=2-3x
Combine all terms containing n.
\frac{\left(x-40\right)n}{x-40}=\frac{2-3x}{x-40}
Divide both sides by x-40.
n=\frac{2-3x}{x-40}
Dividing by x-40 undoes the multiplication by x-40.
n=\frac{2-3x}{x-40}\text{, }n\neq -3
Variable n cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}