Skip to main content
Solve for x
Tick mark Image
Assign x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{\left(10\sqrt{3}+10\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{10\sqrt{3}+10\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
x=\frac{\left(10\sqrt{3}+10\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(10\sqrt{3}+10\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
x=\frac{\left(10\sqrt{3}+10\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
x=\left(10\sqrt{3}+10\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
x=10\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{2}+10\sqrt{2}\sqrt{3}-10\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 10\sqrt{3}+10\sqrt{2} by each term of \sqrt{3}-\sqrt{2}.
x=10\times 3-10\sqrt{3}\sqrt{2}+10\sqrt{2}\sqrt{3}-10\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
x=30-10\sqrt{3}\sqrt{2}+10\sqrt{2}\sqrt{3}-10\left(\sqrt{2}\right)^{2}
Multiply 10 and 3 to get 30.
x=30-10\sqrt{6}+10\sqrt{2}\sqrt{3}-10\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=30-10\sqrt{6}+10\sqrt{6}-10\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
x=30-10\left(\sqrt{2}\right)^{2}
Combine -10\sqrt{6} and 10\sqrt{6} to get 0.
x=30-10\times 2
The square of \sqrt{2} is 2.
x=30-20
Multiply -10 and 2 to get -20.
x=10
Subtract 20 from 30 to get 10.