Solve for x
x=\frac{3\sqrt{6290}}{5032}\approx 0.0472831
Assign x
x≔\frac{3\sqrt{6290}}{5032}
Graph
Share
Copied to clipboard
x=\frac{1.5}{\frac{762}{20}\sqrt{\frac{4\times 59.2}{76.2}\left(1-\frac{59.2}{76.2}\right)}}
Expand \frac{76.2}{2} by multiplying both numerator and the denominator by 10.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{4\times 59.2}{76.2}\left(1-\frac{59.2}{76.2}\right)}}
Reduce the fraction \frac{762}{20} to lowest terms by extracting and canceling out 2.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{236.8}{76.2}\left(1-\frac{59.2}{76.2}\right)}}
Multiply 4 and 59.2 to get 236.8.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{2368}{762}\left(1-\frac{59.2}{76.2}\right)}}
Expand \frac{236.8}{76.2} by multiplying both numerator and the denominator by 10.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\left(1-\frac{59.2}{76.2}\right)}}
Reduce the fraction \frac{2368}{762} to lowest terms by extracting and canceling out 2.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\left(1-\frac{592}{762}\right)}}
Expand \frac{59.2}{76.2} by multiplying both numerator and the denominator by 10.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\left(1-\frac{296}{381}\right)}}
Reduce the fraction \frac{592}{762} to lowest terms by extracting and canceling out 2.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\left(\frac{381}{381}-\frac{296}{381}\right)}}
Convert 1 to fraction \frac{381}{381}.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\times \frac{381-296}{381}}}
Since \frac{381}{381} and \frac{296}{381} have the same denominator, subtract them by subtracting their numerators.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184}{381}\times \frac{85}{381}}}
Subtract 296 from 381 to get 85.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{1184\times 85}{381\times 381}}}
Multiply \frac{1184}{381} times \frac{85}{381} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1.5}{\frac{381}{10}\sqrt{\frac{100640}{145161}}}
Do the multiplications in the fraction \frac{1184\times 85}{381\times 381}.
x=\frac{1.5}{\frac{381}{10}\times \frac{\sqrt{100640}}{\sqrt{145161}}}
Rewrite the square root of the division \sqrt{\frac{100640}{145161}} as the division of square roots \frac{\sqrt{100640}}{\sqrt{145161}}.
x=\frac{1.5}{\frac{381}{10}\times \frac{4\sqrt{6290}}{\sqrt{145161}}}
Factor 100640=4^{2}\times 6290. Rewrite the square root of the product \sqrt{4^{2}\times 6290} as the product of square roots \sqrt{4^{2}}\sqrt{6290}. Take the square root of 4^{2}.
x=\frac{1.5}{\frac{381}{10}\times \frac{4\sqrt{6290}}{381}}
Calculate the square root of 145161 and get 381.
x=\frac{1.5}{\frac{381\times 4\sqrt{6290}}{10\times 381}}
Multiply \frac{381}{10} times \frac{4\sqrt{6290}}{381} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1.5}{\frac{2\sqrt{6290}}{5}}
Cancel out 2\times 381 in both numerator and denominator.
x=\frac{1.5\times 5}{2\sqrt{6290}}
Divide 1.5 by \frac{2\sqrt{6290}}{5} by multiplying 1.5 by the reciprocal of \frac{2\sqrt{6290}}{5}.
x=\frac{1.5\times 5\sqrt{6290}}{2\left(\sqrt{6290}\right)^{2}}
Rationalize the denominator of \frac{1.5\times 5}{2\sqrt{6290}} by multiplying numerator and denominator by \sqrt{6290}.
x=\frac{1.5\times 5\sqrt{6290}}{2\times 6290}
The square of \sqrt{6290} is 6290.
x=\frac{7.5\sqrt{6290}}{2\times 6290}
Multiply 1.5 and 5 to get 7.5.
x=\frac{7.5\sqrt{6290}}{12580}
Multiply 2 and 6290 to get 12580.
x=\frac{3}{5032}\sqrt{6290}
Divide 7.5\sqrt{6290} by 12580 to get \frac{3}{5032}\sqrt{6290}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}