Solve for x
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
x-\frac{1}{4x}=0
Subtract \frac{1}{4x} from both sides.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Since \frac{x\times 4x}{4x} and \frac{1}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-1}{4x}=0
Do the multiplications in x\times 4x-1.
4x^{2}-1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x.
\left(2x-1\right)\left(2x+1\right)=0
Consider 4x^{2}-1. Rewrite 4x^{2}-1 as \left(2x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{2} x=-\frac{1}{2}
To find equation solutions, solve 2x-1=0 and 2x+1=0.
x-\frac{1}{4x}=0
Subtract \frac{1}{4x} from both sides.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Since \frac{x\times 4x}{4x} and \frac{1}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-1}{4x}=0
Do the multiplications in x\times 4x-1.
4x^{2}-1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x.
4x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}=\frac{1}{4}
Divide both sides by 4.
x=\frac{1}{2} x=-\frac{1}{2}
Take the square root of both sides of the equation.
x-\frac{1}{4x}=0
Subtract \frac{1}{4x} from both sides.
\frac{x\times 4x}{4x}-\frac{1}{4x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{4x}{4x}.
\frac{x\times 4x-1}{4x}=0
Since \frac{x\times 4x}{4x} and \frac{1}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-1}{4x}=0
Do the multiplications in x\times 4x-1.
4x^{2}-1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-1\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-1\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-1\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{16}}{2\times 4}
Multiply -16 times -1.
x=\frac{0±4}{2\times 4}
Take the square root of 16.
x=\frac{0±4}{8}
Multiply 2 times 4.
x=\frac{1}{2}
Now solve the equation x=\frac{0±4}{8} when ± is plus. Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{1}{2}
Now solve the equation x=\frac{0±4}{8} when ± is minus. Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=\frac{1}{2} x=-\frac{1}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}