Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{1}{4}x^{2}+\frac{3}{4}
Divide each term of x^{2}+3 by 4 to get \frac{1}{4}x^{2}+\frac{3}{4}.
x-\frac{1}{4}x^{2}=\frac{3}{4}
Subtract \frac{1}{4}x^{2} from both sides.
x-\frac{1}{4}x^{2}-\frac{3}{4}=0
Subtract \frac{3}{4} from both sides.
-\frac{1}{4}x^{2}+x-\frac{3}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{4}\right)\left(-\frac{3}{4}\right)}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 1 for b, and -\frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{4}\right)\left(-\frac{3}{4}\right)}}{2\left(-\frac{1}{4}\right)}
Square 1.
x=\frac{-1±\sqrt{1-\frac{3}{4}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-1±\sqrt{\frac{1}{4}}}{2\left(-\frac{1}{4}\right)}
Add 1 to -\frac{3}{4}.
x=\frac{-1±\frac{1}{2}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{1}{4}.
x=\frac{-1±\frac{1}{2}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=-\frac{\frac{1}{2}}{-\frac{1}{2}}
Now solve the equation x=\frac{-1±\frac{1}{2}}{-\frac{1}{2}} when ± is plus. Add -1 to \frac{1}{2}.
x=1
Divide -\frac{1}{2} by -\frac{1}{2} by multiplying -\frac{1}{2} by the reciprocal of -\frac{1}{2}.
x=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Now solve the equation x=\frac{-1±\frac{1}{2}}{-\frac{1}{2}} when ± is minus. Subtract \frac{1}{2} from -1.
x=3
Divide -\frac{3}{2} by -\frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{1}{2}.
x=1 x=3
The equation is now solved.
x=\frac{1}{4}x^{2}+\frac{3}{4}
Divide each term of x^{2}+3 by 4 to get \frac{1}{4}x^{2}+\frac{3}{4}.
x-\frac{1}{4}x^{2}=\frac{3}{4}
Subtract \frac{1}{4}x^{2} from both sides.
-\frac{1}{4}x^{2}+x=\frac{3}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{4}x^{2}+x}{-\frac{1}{4}}=\frac{\frac{3}{4}}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\frac{1}{-\frac{1}{4}}x=\frac{\frac{3}{4}}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}-4x=\frac{\frac{3}{4}}{-\frac{1}{4}}
Divide 1 by -\frac{1}{4} by multiplying 1 by the reciprocal of -\frac{1}{4}.
x^{2}-4x=-3
Divide \frac{3}{4} by -\frac{1}{4} by multiplying \frac{3}{4} by the reciprocal of -\frac{1}{4}.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.