Solve for x

x=-\frac{y}{1-y},y\neq 1

Solve for y

y=-\frac{x}{1-x},x\neq 1

Graph

## Share

Copied to clipboard

x+y-xy=0

Subtract xy from both sides.

x-xy=-y

Subtract y from both sides. Anything subtracted from zero gives its negation.

\left(1-y\right)x=-y

Combine all terms containing x.

\frac{\left(1-y\right)x}{1-y}=-\frac{y}{1-y}

Divide both sides by 1-y.

x=-\frac{y}{1-y}

Dividing by 1-y undoes the multiplication by 1-y.

x+y-xy=0

Subtract xy from both sides.

y-xy=-x

Subtract x from both sides. Anything subtracted from zero gives its negation.

\left(1-x\right)y=-x

Combine all terms containing y.

\frac{\left(1-x\right)y}{1-x}=-\frac{x}{1-x}

Divide both sides by 1-x.

y=-\frac{x}{1-x}

Dividing by 1-x undoes the multiplication by 1-x.

## Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

Linear equation

y = 3x + 4

Arithmetic

699 * 533

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}