Solve for x
x=2\sqrt{481}-42\approx 1.863424399
x=-2\sqrt{481}-42\approx -85.863424399
Graph
Share
Copied to clipboard
xx+x\times 84=160
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+x\times 84=160
Multiply x and x to get x^{2}.
x^{2}+x\times 84-160=0
Subtract 160 from both sides.
x^{2}+84x-160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-84±\sqrt{84^{2}-4\left(-160\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 84 for b, and -160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-84±\sqrt{7056-4\left(-160\right)}}{2}
Square 84.
x=\frac{-84±\sqrt{7056+640}}{2}
Multiply -4 times -160.
x=\frac{-84±\sqrt{7696}}{2}
Add 7056 to 640.
x=\frac{-84±4\sqrt{481}}{2}
Take the square root of 7696.
x=\frac{4\sqrt{481}-84}{2}
Now solve the equation x=\frac{-84±4\sqrt{481}}{2} when ± is plus. Add -84 to 4\sqrt{481}.
x=2\sqrt{481}-42
Divide -84+4\sqrt{481} by 2.
x=\frac{-4\sqrt{481}-84}{2}
Now solve the equation x=\frac{-84±4\sqrt{481}}{2} when ± is minus. Subtract 4\sqrt{481} from -84.
x=-2\sqrt{481}-42
Divide -84-4\sqrt{481} by 2.
x=2\sqrt{481}-42 x=-2\sqrt{481}-42
The equation is now solved.
xx+x\times 84=160
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+x\times 84=160
Multiply x and x to get x^{2}.
x^{2}+84x=160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+84x+42^{2}=160+42^{2}
Divide 84, the coefficient of the x term, by 2 to get 42. Then add the square of 42 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+84x+1764=160+1764
Square 42.
x^{2}+84x+1764=1924
Add 160 to 1764.
\left(x+42\right)^{2}=1924
Factor x^{2}+84x+1764. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+42\right)^{2}}=\sqrt{1924}
Take the square root of both sides of the equation.
x+42=2\sqrt{481} x+42=-2\sqrt{481}
Simplify.
x=2\sqrt{481}-42 x=-2\sqrt{481}-42
Subtract 42 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}