Solve for x
x=-6
x=-5
Graph
Share
Copied to clipboard
\left(x+6\right)^{2}=\left(\sqrt{x+6}\right)^{2}
Square both sides of the equation.
x^{2}+12x+36=\left(\sqrt{x+6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36=x+6
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x^{2}+12x+36-x=6
Subtract x from both sides.
x^{2}+11x+36=6
Combine 12x and -x to get 11x.
x^{2}+11x+36-6=0
Subtract 6 from both sides.
x^{2}+11x+30=0
Subtract 6 from 36 to get 30.
a+b=11 ab=30
To solve the equation, factor x^{2}+11x+30 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=5 b=6
The solution is the pair that gives sum 11.
\left(x+5\right)\left(x+6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-5 x=-6
To find equation solutions, solve x+5=0 and x+6=0.
-5+6=\sqrt{-5+6}
Substitute -5 for x in the equation x+6=\sqrt{x+6}.
1=1
Simplify. The value x=-5 satisfies the equation.
-6+6=\sqrt{-6+6}
Substitute -6 for x in the equation x+6=\sqrt{x+6}.
0=0
Simplify. The value x=-6 satisfies the equation.
x=-5 x=-6
List all solutions of x+6=\sqrt{x+6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}