Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x+624-2x=24+96x\times 2x+24\times 4
Multiply both sides of the equation by 12.
12x+624-2x=24+96x^{2}\times 2+24\times 4
Multiply x and x to get x^{2}.
10x+624=24+96x^{2}\times 2+24\times 4
Combine 12x and -2x to get 10x.
10x+624=24+192x^{2}+24\times 4
Multiply 96 and 2 to get 192.
10x+624=24+192x^{2}+96
Multiply 24 and 4 to get 96.
10x+624=120+192x^{2}
Add 24 and 96 to get 120.
10x+624-120=192x^{2}
Subtract 120 from both sides.
10x+504=192x^{2}
Subtract 120 from 624 to get 504.
10x+504-192x^{2}=0
Subtract 192x^{2} from both sides.
-192x^{2}+10x+504=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-192\right)\times 504}}{2\left(-192\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -192 for a, 10 for b, and 504 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-192\right)\times 504}}{2\left(-192\right)}
Square 10.
x=\frac{-10±\sqrt{100+768\times 504}}{2\left(-192\right)}
Multiply -4 times -192.
x=\frac{-10±\sqrt{100+387072}}{2\left(-192\right)}
Multiply 768 times 504.
x=\frac{-10±\sqrt{387172}}{2\left(-192\right)}
Add 100 to 387072.
x=\frac{-10±2\sqrt{96793}}{2\left(-192\right)}
Take the square root of 387172.
x=\frac{-10±2\sqrt{96793}}{-384}
Multiply 2 times -192.
x=\frac{2\sqrt{96793}-10}{-384}
Now solve the equation x=\frac{-10±2\sqrt{96793}}{-384} when ± is plus. Add -10 to 2\sqrt{96793}.
x=\frac{5-\sqrt{96793}}{192}
Divide -10+2\sqrt{96793} by -384.
x=\frac{-2\sqrt{96793}-10}{-384}
Now solve the equation x=\frac{-10±2\sqrt{96793}}{-384} when ± is minus. Subtract 2\sqrt{96793} from -10.
x=\frac{\sqrt{96793}+5}{192}
Divide -10-2\sqrt{96793} by -384.
x=\frac{5-\sqrt{96793}}{192} x=\frac{\sqrt{96793}+5}{192}
The equation is now solved.
12x+624-2x=24+96x\times 2x+24\times 4
Multiply both sides of the equation by 12.
12x+624-2x=24+96x^{2}\times 2+24\times 4
Multiply x and x to get x^{2}.
10x+624=24+96x^{2}\times 2+24\times 4
Combine 12x and -2x to get 10x.
10x+624=24+192x^{2}+24\times 4
Multiply 96 and 2 to get 192.
10x+624=24+192x^{2}+96
Multiply 24 and 4 to get 96.
10x+624=120+192x^{2}
Add 24 and 96 to get 120.
10x+624-192x^{2}=120
Subtract 192x^{2} from both sides.
10x-192x^{2}=120-624
Subtract 624 from both sides.
10x-192x^{2}=-504
Subtract 624 from 120 to get -504.
-192x^{2}+10x=-504
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-192x^{2}+10x}{-192}=-\frac{504}{-192}
Divide both sides by -192.
x^{2}+\frac{10}{-192}x=-\frac{504}{-192}
Dividing by -192 undoes the multiplication by -192.
x^{2}-\frac{5}{96}x=-\frac{504}{-192}
Reduce the fraction \frac{10}{-192} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{96}x=\frac{21}{8}
Reduce the fraction \frac{-504}{-192} to lowest terms by extracting and canceling out 24.
x^{2}-\frac{5}{96}x+\left(-\frac{5}{192}\right)^{2}=\frac{21}{8}+\left(-\frac{5}{192}\right)^{2}
Divide -\frac{5}{96}, the coefficient of the x term, by 2 to get -\frac{5}{192}. Then add the square of -\frac{5}{192} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{96}x+\frac{25}{36864}=\frac{21}{8}+\frac{25}{36864}
Square -\frac{5}{192} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{96}x+\frac{25}{36864}=\frac{96793}{36864}
Add \frac{21}{8} to \frac{25}{36864} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{192}\right)^{2}=\frac{96793}{36864}
Factor x^{2}-\frac{5}{96}x+\frac{25}{36864}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{192}\right)^{2}}=\sqrt{\frac{96793}{36864}}
Take the square root of both sides of the equation.
x-\frac{5}{192}=\frac{\sqrt{96793}}{192} x-\frac{5}{192}=-\frac{\sqrt{96793}}{192}
Simplify.
x=\frac{\sqrt{96793}+5}{192} x=\frac{5-\sqrt{96793}}{192}
Add \frac{5}{192} to both sides of the equation.