Solve for x
x=24
x=41
Graph
Share
Copied to clipboard
x+40=x^{2}-64x+1024
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-32\right)^{2}.
x+40-x^{2}=-64x+1024
Subtract x^{2} from both sides.
x+40-x^{2}+64x=1024
Add 64x to both sides.
65x+40-x^{2}=1024
Combine x and 64x to get 65x.
65x+40-x^{2}-1024=0
Subtract 1024 from both sides.
65x-984-x^{2}=0
Subtract 1024 from 40 to get -984.
-x^{2}+65x-984=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=65 ab=-\left(-984\right)=984
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-984. To find a and b, set up a system to be solved.
1,984 2,492 3,328 4,246 6,164 8,123 12,82 24,41
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 984.
1+984=985 2+492=494 3+328=331 4+246=250 6+164=170 8+123=131 12+82=94 24+41=65
Calculate the sum for each pair.
a=41 b=24
The solution is the pair that gives sum 65.
\left(-x^{2}+41x\right)+\left(24x-984\right)
Rewrite -x^{2}+65x-984 as \left(-x^{2}+41x\right)+\left(24x-984\right).
-x\left(x-41\right)+24\left(x-41\right)
Factor out -x in the first and 24 in the second group.
\left(x-41\right)\left(-x+24\right)
Factor out common term x-41 by using distributive property.
x=41 x=24
To find equation solutions, solve x-41=0 and -x+24=0.
x+40=x^{2}-64x+1024
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-32\right)^{2}.
x+40-x^{2}=-64x+1024
Subtract x^{2} from both sides.
x+40-x^{2}+64x=1024
Add 64x to both sides.
65x+40-x^{2}=1024
Combine x and 64x to get 65x.
65x+40-x^{2}-1024=0
Subtract 1024 from both sides.
65x-984-x^{2}=0
Subtract 1024 from 40 to get -984.
-x^{2}+65x-984=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-65±\sqrt{65^{2}-4\left(-1\right)\left(-984\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 65 for b, and -984 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65±\sqrt{4225-4\left(-1\right)\left(-984\right)}}{2\left(-1\right)}
Square 65.
x=\frac{-65±\sqrt{4225+4\left(-984\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-65±\sqrt{4225-3936}}{2\left(-1\right)}
Multiply 4 times -984.
x=\frac{-65±\sqrt{289}}{2\left(-1\right)}
Add 4225 to -3936.
x=\frac{-65±17}{2\left(-1\right)}
Take the square root of 289.
x=\frac{-65±17}{-2}
Multiply 2 times -1.
x=-\frac{48}{-2}
Now solve the equation x=\frac{-65±17}{-2} when ± is plus. Add -65 to 17.
x=24
Divide -48 by -2.
x=-\frac{82}{-2}
Now solve the equation x=\frac{-65±17}{-2} when ± is minus. Subtract 17 from -65.
x=41
Divide -82 by -2.
x=24 x=41
The equation is now solved.
x+40=x^{2}-64x+1024
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-32\right)^{2}.
x+40-x^{2}=-64x+1024
Subtract x^{2} from both sides.
x+40-x^{2}+64x=1024
Add 64x to both sides.
65x+40-x^{2}=1024
Combine x and 64x to get 65x.
65x-x^{2}=1024-40
Subtract 40 from both sides.
65x-x^{2}=984
Subtract 40 from 1024 to get 984.
-x^{2}+65x=984
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+65x}{-1}=\frac{984}{-1}
Divide both sides by -1.
x^{2}+\frac{65}{-1}x=\frac{984}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-65x=\frac{984}{-1}
Divide 65 by -1.
x^{2}-65x=-984
Divide 984 by -1.
x^{2}-65x+\left(-\frac{65}{2}\right)^{2}=-984+\left(-\frac{65}{2}\right)^{2}
Divide -65, the coefficient of the x term, by 2 to get -\frac{65}{2}. Then add the square of -\frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-65x+\frac{4225}{4}=-984+\frac{4225}{4}
Square -\frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-65x+\frac{4225}{4}=\frac{289}{4}
Add -984 to \frac{4225}{4}.
\left(x-\frac{65}{2}\right)^{2}=\frac{289}{4}
Factor x^{2}-65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Take the square root of both sides of the equation.
x-\frac{65}{2}=\frac{17}{2} x-\frac{65}{2}=-\frac{17}{2}
Simplify.
x=41 x=24
Add \frac{65}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}