Solve for x
x=-\frac{3}{1-2y}
y\neq \frac{1}{2}
Solve for y
y=\frac{1}{2}+\frac{3}{2x}
x\neq 0
Graph
Share
Copied to clipboard
x+3-yx\times 2=0
Subtract yx\times 2 from both sides.
x+3-2yx=0
Multiply -1 and 2 to get -2.
x-2yx=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(1-2y\right)x=-3
Combine all terms containing x.
\frac{\left(1-2y\right)x}{1-2y}=-\frac{3}{1-2y}
Divide both sides by 1-2y.
x=-\frac{3}{1-2y}
Dividing by 1-2y undoes the multiplication by 1-2y.
yx\times 2=x+3
Swap sides so that all variable terms are on the left hand side.
2xy=x+3
The equation is in standard form.
\frac{2xy}{2x}=\frac{x+3}{2x}
Divide both sides by 2x.
y=\frac{x+3}{2x}
Dividing by 2x undoes the multiplication by 2x.
y=\frac{1}{2}+\frac{3}{2x}
Divide x+3 by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}