Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\sqrt{x}=-\left(x+4\right)
Subtract x+4 from both sides of the equation.
3\sqrt{x}=-x-4
To find the opposite of x+4, find the opposite of each term.
\left(3\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
9\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x=\left(-x-4\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x=x^{2}+8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-4\right)^{2}.
9x-x^{2}=8x+16
Subtract x^{2} from both sides.
9x-x^{2}-8x=16
Subtract 8x from both sides.
x-x^{2}=16
Combine 9x and -8x to get x.
x-x^{2}-16=0
Subtract 16 from both sides.
-x^{2}+x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-1±\sqrt{-63}}{2\left(-1\right)}
Add 1 to -64.
x=\frac{-1±3\sqrt{7}i}{2\left(-1\right)}
Take the square root of -63.
x=\frac{-1±3\sqrt{7}i}{-2}
Multiply 2 times -1.
x=\frac{-1+3\sqrt{7}i}{-2}
Now solve the equation x=\frac{-1±3\sqrt{7}i}{-2} when ± is plus. Add -1 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{2}
Divide -1+3i\sqrt{7} by -2.
x=\frac{-3\sqrt{7}i-1}{-2}
Now solve the equation x=\frac{-1±3\sqrt{7}i}{-2} when ± is minus. Subtract 3i\sqrt{7} from -1.
x=\frac{1+3\sqrt{7}i}{2}
Divide -1-3i\sqrt{7} by -2.
x=\frac{-3\sqrt{7}i+1}{2} x=\frac{1+3\sqrt{7}i}{2}
The equation is now solved.
\frac{-3\sqrt{7}i+1}{2}+3\sqrt{\frac{-3\sqrt{7}i+1}{2}}+4=0
Substitute \frac{-3\sqrt{7}i+1}{2} for x in the equation x+3\sqrt{x}+4=0.
0=0
Simplify. The value x=\frac{-3\sqrt{7}i+1}{2} satisfies the equation.
\frac{1+3\sqrt{7}i}{2}+3\sqrt{\frac{1+3\sqrt{7}i}{2}}+4=0
Substitute \frac{1+3\sqrt{7}i}{2} for x in the equation x+3\sqrt{x}+4=0.
9+3i\times 7^{\frac{1}{2}}=0
Simplify. The value x=\frac{1+3\sqrt{7}i}{2} does not satisfy the equation.
x=\frac{-3\sqrt{7}i+1}{2}
Equation 3\sqrt{x}=-x-4 has a unique solution.