Solve for x (complex solution)
x=\frac{-3\sqrt{7}i+1}{2}\approx 0.5-3.968626967i
Graph
Share
Copied to clipboard
3\sqrt{x}=-\left(x+4\right)
Subtract x+4 from both sides of the equation.
3\sqrt{x}=-x-4
To find the opposite of x+4, find the opposite of each term.
\left(3\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
9\left(\sqrt{x}\right)^{2}=\left(-x-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x=\left(-x-4\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x=x^{2}+8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-4\right)^{2}.
9x-x^{2}=8x+16
Subtract x^{2} from both sides.
9x-x^{2}-8x=16
Subtract 8x from both sides.
x-x^{2}=16
Combine 9x and -8x to get x.
x-x^{2}-16=0
Subtract 16 from both sides.
-x^{2}+x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-1±\sqrt{-63}}{2\left(-1\right)}
Add 1 to -64.
x=\frac{-1±3\sqrt{7}i}{2\left(-1\right)}
Take the square root of -63.
x=\frac{-1±3\sqrt{7}i}{-2}
Multiply 2 times -1.
x=\frac{-1+3\sqrt{7}i}{-2}
Now solve the equation x=\frac{-1±3\sqrt{7}i}{-2} when ± is plus. Add -1 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{2}
Divide -1+3i\sqrt{7} by -2.
x=\frac{-3\sqrt{7}i-1}{-2}
Now solve the equation x=\frac{-1±3\sqrt{7}i}{-2} when ± is minus. Subtract 3i\sqrt{7} from -1.
x=\frac{1+3\sqrt{7}i}{2}
Divide -1-3i\sqrt{7} by -2.
x=\frac{-3\sqrt{7}i+1}{2} x=\frac{1+3\sqrt{7}i}{2}
The equation is now solved.
\frac{-3\sqrt{7}i+1}{2}+3\sqrt{\frac{-3\sqrt{7}i+1}{2}}+4=0
Substitute \frac{-3\sqrt{7}i+1}{2} for x in the equation x+3\sqrt{x}+4=0.
0=0
Simplify. The value x=\frac{-3\sqrt{7}i+1}{2} satisfies the equation.
\frac{1+3\sqrt{7}i}{2}+3\sqrt{\frac{1+3\sqrt{7}i}{2}}+4=0
Substitute \frac{1+3\sqrt{7}i}{2} for x in the equation x+3\sqrt{x}+4=0.
9+3i\times 7^{\frac{1}{2}}=0
Simplify. The value x=\frac{1+3\sqrt{7}i}{2} does not satisfy the equation.
x=\frac{-3\sqrt{7}i+1}{2}
Equation 3\sqrt{x}=-x-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}