Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2xx+2\times 3=3x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
2x^{2}+2\times 3=3x
Multiply x and x to get x^{2}.
2x^{2}+6=3x
Multiply 2 and 3 to get 6.
2x^{2}+6-3x=0
Subtract 3x from both sides.
2x^{2}-3x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\times 6}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\times 6}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\times 6}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9-48}}{2\times 2}
Multiply -8 times 6.
x=\frac{-\left(-3\right)±\sqrt{-39}}{2\times 2}
Add 9 to -48.
x=\frac{-\left(-3\right)±\sqrt{39}i}{2\times 2}
Take the square root of -39.
x=\frac{3±\sqrt{39}i}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±\sqrt{39}i}{4}
Multiply 2 times 2.
x=\frac{3+\sqrt{39}i}{4}
Now solve the equation x=\frac{3±\sqrt{39}i}{4} when ± is plus. Add 3 to i\sqrt{39}.
x=\frac{-\sqrt{39}i+3}{4}
Now solve the equation x=\frac{3±\sqrt{39}i}{4} when ± is minus. Subtract i\sqrt{39} from 3.
x=\frac{3+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+3}{4}
The equation is now solved.
2xx+2\times 3=3x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
2x^{2}+2\times 3=3x
Multiply x and x to get x^{2}.
2x^{2}+6=3x
Multiply 2 and 3 to get 6.
2x^{2}+6-3x=0
Subtract 3x from both sides.
2x^{2}-3x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-3x}{2}=-\frac{6}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=-\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x=-3
Divide -6 by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-3+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-3+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{39}{16}
Add -3 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{39}i}{4} x-\frac{3}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{3+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+3}{4}
Add \frac{3}{4} to both sides of the equation.