Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

x+2y+ix-iy=3-6i
Use the distributive property to multiply x-y by i.
\left(1+i\right)x+2y-iy=3-6i
Combine x and ix to get \left(1+i\right)x.
\left(1+i\right)x+\left(2-i\right)y=3-6i
Combine 2y and -iy to get \left(2-i\right)y.
\left(1+i\right)x=3-6i-\left(2-i\right)y
Subtract \left(2-i\right)y from both sides.
\left(1+i\right)x=3-6i+\left(-2+i\right)y
Multiply -1 and 2-i to get -2+i.
\left(1+i\right)x=\left(-2+i\right)y+\left(3-6i\right)
The equation is in standard form.
\frac{\left(1+i\right)x}{1+i}=\frac{\left(-2+i\right)y+\left(3-6i\right)}{1+i}
Divide both sides by 1+i.
x=\frac{\left(-2+i\right)y+\left(3-6i\right)}{1+i}
Dividing by 1+i undoes the multiplication by 1+i.
x=\left(-\frac{1}{2}+\frac{3}{2}i\right)y+\left(-\frac{3}{2}-\frac{9}{2}i\right)
Divide 3-6i+\left(-2+i\right)y by 1+i.
x+2y+ix-iy=3-6i
Use the distributive property to multiply x-y by i.
\left(1+i\right)x+2y-iy=3-6i
Combine x and ix to get \left(1+i\right)x.
\left(1+i\right)x+\left(2-i\right)y=3-6i
Combine 2y and -iy to get \left(2-i\right)y.
\left(2-i\right)y=3-6i-\left(1+i\right)x
Subtract \left(1+i\right)x from both sides.
\left(2-i\right)y=3-6i+\left(-1-i\right)x
Multiply -1 and 1+i to get -1-i.
\left(2-i\right)y=\left(-1-i\right)x+\left(3-6i\right)
The equation is in standard form.
\frac{\left(2-i\right)y}{2-i}=\frac{\left(-1-i\right)x+\left(3-6i\right)}{2-i}
Divide both sides by 2-i.
y=\frac{\left(-1-i\right)x+\left(3-6i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
y=\left(-\frac{1}{5}-\frac{3}{5}i\right)x+\left(\frac{12}{5}-\frac{9}{5}i\right)
Divide 3-6i+\left(-1-i\right)x by 2-i.