x+20 \% -10 \% \div x=
Evaluate
x+\frac{1}{5}-\frac{1}{10x}
Factor
\frac{\left(x-\frac{-\sqrt{11}-1}{10}\right)\left(x-\frac{\sqrt{11}-1}{10}\right)}{x}
Graph
Share
Copied to clipboard
x+\frac{1}{5}-\frac{\frac{10}{100}}{x}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
x+\frac{1}{5}-\frac{10}{100x}
Express \frac{\frac{10}{100}}{x} as a single fraction.
x+\frac{20x}{100x}-\frac{10}{100x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 100x is 100x. Multiply \frac{1}{5} times \frac{20x}{20x}.
x+\frac{20x-10}{100x}
Since \frac{20x}{100x} and \frac{10}{100x} have the same denominator, subtract them by subtracting their numerators.
x+\frac{10\left(2x-1\right)}{100x}
Factor the expressions that are not already factored in \frac{20x-10}{100x}.
x+\frac{2x-1}{10x}
Cancel out 10 in both numerator and denominator.
\frac{x\times 10x}{10x}+\frac{2x-1}{10x}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{10x}{10x}.
\frac{x\times 10x+2x-1}{10x}
Since \frac{x\times 10x}{10x} and \frac{2x-1}{10x} have the same denominator, add them by adding their numerators.
\frac{10x^{2}+2x-1}{10x}
Do the multiplications in x\times 10x+2x-1.
\frac{10\left(x-\left(-\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)}{10x}
Factor the expressions that are not already factored in \frac{10x^{2}+2x-1}{10x}.
\frac{\left(x-\left(-\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)}{x}
Cancel out 10 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{10}\sqrt{11}\right)-\left(-\frac{1}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)}{x}
To find the opposite of -\frac{1}{10}\sqrt{11}-\frac{1}{10}, find the opposite of each term.
\frac{\left(x+\frac{1}{10}\sqrt{11}-\left(-\frac{1}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)}{x}
The opposite of -\frac{1}{10}\sqrt{11} is \frac{1}{10}\sqrt{11}.
\frac{\left(x+\frac{1}{10}\sqrt{11}+\frac{1}{10}\right)\left(x-\left(\frac{1}{10}\sqrt{11}-\frac{1}{10}\right)\right)}{x}
The opposite of -\frac{1}{10} is \frac{1}{10}.
\frac{\left(x+\frac{1}{10}\sqrt{11}+\frac{1}{10}\right)\left(x-\frac{1}{10}\sqrt{11}-\left(-\frac{1}{10}\right)\right)}{x}
To find the opposite of \frac{1}{10}\sqrt{11}-\frac{1}{10}, find the opposite of each term.
\frac{\left(x+\frac{1}{10}\sqrt{11}+\frac{1}{10}\right)\left(x-\frac{1}{10}\sqrt{11}+\frac{1}{10}\right)}{x}
The opposite of -\frac{1}{10} is \frac{1}{10}.
\frac{x^{2}+x\left(-\frac{1}{10}\right)\sqrt{11}+x\times \frac{1}{10}+\frac{1}{10}\sqrt{11}x+\frac{1}{10}\sqrt{11}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Apply the distributive property by multiplying each term of x+\frac{1}{10}\sqrt{11}+\frac{1}{10} by each term of x-\frac{1}{10}\sqrt{11}+\frac{1}{10}.
\frac{x^{2}+x\left(-\frac{1}{10}\right)\sqrt{11}+x\times \frac{1}{10}+\frac{1}{10}\sqrt{11}x+\frac{1}{10}\times 11\left(-\frac{1}{10}\right)+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Multiply \sqrt{11} and \sqrt{11} to get 11.
\frac{x^{2}+x\times \frac{1}{10}+\frac{1}{10}\times 11\left(-\frac{1}{10}\right)+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Combine x\left(-\frac{1}{10}\right)\sqrt{11} and \frac{1}{10}\sqrt{11}x to get 0.
\frac{x^{2}+x\times \frac{1}{10}+\frac{11}{10}\left(-\frac{1}{10}\right)+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Multiply \frac{1}{10} and 11 to get \frac{11}{10}.
\frac{x^{2}+x\times \frac{1}{10}+\frac{11\left(-1\right)}{10\times 10}+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Multiply \frac{11}{10} times -\frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{1}{10}+\frac{-11}{100}+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Do the multiplications in the fraction \frac{11\left(-1\right)}{10\times 10}.
\frac{x^{2}+x\times \frac{1}{10}-\frac{11}{100}+\frac{1}{10}\sqrt{11}\times \frac{1}{10}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Fraction \frac{-11}{100} can be rewritten as -\frac{11}{100} by extracting the negative sign.
\frac{x^{2}+x\times \frac{1}{10}-\frac{11}{100}+\frac{1\times 1}{10\times 10}\sqrt{11}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Multiply \frac{1}{10} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{1}{10}-\frac{11}{100}+\frac{1}{100}\sqrt{11}+\frac{1}{10}x+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Do the multiplications in the fraction \frac{1\times 1}{10\times 10}.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{100}\sqrt{11}+\frac{1}{10}\left(-\frac{1}{10}\right)\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Combine x\times \frac{1}{10} and \frac{1}{10}x to get \frac{1}{5}x.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{100}\sqrt{11}+\frac{1\left(-1\right)}{10\times 10}\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Multiply \frac{1}{10} times -\frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{100}\sqrt{11}+\frac{-1}{100}\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Do the multiplications in the fraction \frac{1\left(-1\right)}{10\times 10}.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{100}\sqrt{11}-\frac{1}{100}\sqrt{11}+\frac{1}{10}\times \frac{1}{10}}{x}
Fraction \frac{-1}{100} can be rewritten as -\frac{1}{100} by extracting the negative sign.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{10}\times \frac{1}{10}}{x}
Combine \frac{1}{100}\sqrt{11} and -\frac{1}{100}\sqrt{11} to get 0.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1\times 1}{10\times 10}}{x}
Multiply \frac{1}{10} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{1}{5}x-\frac{11}{100}+\frac{1}{100}}{x}
Do the multiplications in the fraction \frac{1\times 1}{10\times 10}.
\frac{x^{2}+\frac{1}{5}x+\frac{-11+1}{100}}{x}
Since -\frac{11}{100} and \frac{1}{100} have the same denominator, add them by adding their numerators.
\frac{x^{2}+\frac{1}{5}x+\frac{-10}{100}}{x}
Add -11 and 1 to get -10.
\frac{x^{2}+\frac{1}{5}x-\frac{1}{10}}{x}
Reduce the fraction \frac{-10}{100} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}