Solve for x
x=3
Graph
Share
Copied to clipboard
\left(x+2\right)^{2}=\left(\sqrt{x^{2}+4^{2}}\right)^{2}
Square both sides of the equation.
x^{2}+4x+4=\left(\sqrt{x^{2}+4^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=\left(\sqrt{x^{2}+16}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}+4x+4=x^{2}+16
Calculate \sqrt{x^{2}+16} to the power of 2 and get x^{2}+16.
x^{2}+4x+4-x^{2}=16
Subtract x^{2} from both sides.
4x+4=16
Combine x^{2} and -x^{2} to get 0.
4x=16-4
Subtract 4 from both sides.
4x=12
Subtract 4 from 16 to get 12.
x=\frac{12}{4}
Divide both sides by 4.
x=3
Divide 12 by 4 to get 3.
3+2=\sqrt{3^{2}+4^{2}}
Substitute 3 for x in the equation x+2=\sqrt{x^{2}+4^{2}}.
5=5
Simplify. The value x=3 satisfies the equation.
x=3
Equation x+2=\sqrt{x^{2}+16} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}