Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

xx+1=5x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+1=5x
Multiply x and x to get x^{2}.
x^{2}+1-5x=0
Subtract 5x from both sides.
x^{2}-5x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{21}}{2}
Add 25 to -4.
x=\frac{5±\sqrt{21}}{2}
The opposite of -5 is 5.
x=\frac{\sqrt{21}+5}{2}
Now solve the equation x=\frac{5±\sqrt{21}}{2} when ± is plus. Add 5 to \sqrt{21}.
x=\frac{5-\sqrt{21}}{2}
Now solve the equation x=\frac{5±\sqrt{21}}{2} when ± is minus. Subtract \sqrt{21} from 5.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
The equation is now solved.
xx+1=5x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+1=5x
Multiply x and x to get x^{2}.
x^{2}+1-5x=0
Subtract 5x from both sides.
x^{2}-5x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
Add -1 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
Add \frac{5}{2} to both sides of the equation.