Solve for x
x = \frac{27 - \sqrt{53}}{2} \approx 9.859945055
Graph
Share
Copied to clipboard
\sqrt{x}=-\left(x-13\right)
Subtract x-13 from both sides of the equation.
\sqrt{x}=-x-\left(-13\right)
To find the opposite of x-13, find the opposite of each term.
\sqrt{x}=-x+13
The opposite of -13 is 13.
\left(\sqrt{x}\right)^{2}=\left(-x+13\right)^{2}
Square both sides of the equation.
x=\left(-x+13\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}-26x+169
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+13\right)^{2}.
x-x^{2}=-26x+169
Subtract x^{2} from both sides.
x-x^{2}+26x=169
Add 26x to both sides.
27x-x^{2}=169
Combine x and 26x to get 27x.
27x-x^{2}-169=0
Subtract 169 from both sides.
-x^{2}+27x-169=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-27±\sqrt{27^{2}-4\left(-1\right)\left(-169\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 27 for b, and -169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-1\right)\left(-169\right)}}{2\left(-1\right)}
Square 27.
x=\frac{-27±\sqrt{729+4\left(-169\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-27±\sqrt{729-676}}{2\left(-1\right)}
Multiply 4 times -169.
x=\frac{-27±\sqrt{53}}{2\left(-1\right)}
Add 729 to -676.
x=\frac{-27±\sqrt{53}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{53}-27}{-2}
Now solve the equation x=\frac{-27±\sqrt{53}}{-2} when ± is plus. Add -27 to \sqrt{53}.
x=\frac{27-\sqrt{53}}{2}
Divide -27+\sqrt{53} by -2.
x=\frac{-\sqrt{53}-27}{-2}
Now solve the equation x=\frac{-27±\sqrt{53}}{-2} when ± is minus. Subtract \sqrt{53} from -27.
x=\frac{\sqrt{53}+27}{2}
Divide -27-\sqrt{53} by -2.
x=\frac{27-\sqrt{53}}{2} x=\frac{\sqrt{53}+27}{2}
The equation is now solved.
\frac{27-\sqrt{53}}{2}+\sqrt{\frac{27-\sqrt{53}}{2}}-13=0
Substitute \frac{27-\sqrt{53}}{2} for x in the equation x+\sqrt{x}-13=0.
0=0
Simplify. The value x=\frac{27-\sqrt{53}}{2} satisfies the equation.
\frac{\sqrt{53}+27}{2}+\sqrt{\frac{\sqrt{53}+27}{2}}-13=0
Substitute \frac{\sqrt{53}+27}{2} for x in the equation x+\sqrt{x}-13=0.
53^{\frac{1}{2}}+1=0
Simplify. The value x=\frac{\sqrt{53}+27}{2} does not satisfy the equation.
x=\frac{27-\sqrt{53}}{2}
Equation \sqrt{x}=13-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}