Solve for x
x=81
Graph
Share
Copied to clipboard
\sqrt{x}=90-x
Subtract x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(90-x\right)^{2}
Square both sides of the equation.
x=\left(90-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=8100-180x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(90-x\right)^{2}.
x-8100=-180x+x^{2}
Subtract 8100 from both sides.
x-8100+180x=x^{2}
Add 180x to both sides.
181x-8100=x^{2}
Combine x and 180x to get 181x.
181x-8100-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+181x-8100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-181±\sqrt{181^{2}-4\left(-1\right)\left(-8100\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 181 for b, and -8100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-181±\sqrt{32761-4\left(-1\right)\left(-8100\right)}}{2\left(-1\right)}
Square 181.
x=\frac{-181±\sqrt{32761+4\left(-8100\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-181±\sqrt{32761-32400}}{2\left(-1\right)}
Multiply 4 times -8100.
x=\frac{-181±\sqrt{361}}{2\left(-1\right)}
Add 32761 to -32400.
x=\frac{-181±19}{2\left(-1\right)}
Take the square root of 361.
x=\frac{-181±19}{-2}
Multiply 2 times -1.
x=-\frac{162}{-2}
Now solve the equation x=\frac{-181±19}{-2} when ± is plus. Add -181 to 19.
x=81
Divide -162 by -2.
x=-\frac{200}{-2}
Now solve the equation x=\frac{-181±19}{-2} when ± is minus. Subtract 19 from -181.
x=100
Divide -200 by -2.
x=81 x=100
The equation is now solved.
81+\sqrt{81}=90
Substitute 81 for x in the equation x+\sqrt{x}=90.
90=90
Simplify. The value x=81 satisfies the equation.
100+\sqrt{100}=90
Substitute 100 for x in the equation x+\sqrt{x}=90.
110=90
Simplify. The value x=100 does not satisfy the equation.
x=81
Equation \sqrt{x}=90-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}