Solve for x
x=7-2\sqrt{6}\approx 2.101020514
Graph
Share
Copied to clipboard
\sqrt{4x}=-\left(x-5\right)
Subtract x-5 from both sides of the equation.
\sqrt{4x}=-x-\left(-5\right)
To find the opposite of x-5, find the opposite of each term.
\sqrt{4x}=-x+5
The opposite of -5 is 5.
\left(\sqrt{4x}\right)^{2}=\left(-x+5\right)^{2}
Square both sides of the equation.
4x=\left(-x+5\right)^{2}
Calculate \sqrt{4x} to the power of 2 and get 4x.
4x=x^{2}-10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+5\right)^{2}.
4x-x^{2}=-10x+25
Subtract x^{2} from both sides.
4x-x^{2}+10x=25
Add 10x to both sides.
14x-x^{2}=25
Combine 4x and 10x to get 14x.
14x-x^{2}-25=0
Subtract 25 from both sides.
-x^{2}+14x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 14 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Square 14.
x=\frac{-14±\sqrt{196+4\left(-25\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-14±\sqrt{196-100}}{2\left(-1\right)}
Multiply 4 times -25.
x=\frac{-14±\sqrt{96}}{2\left(-1\right)}
Add 196 to -100.
x=\frac{-14±4\sqrt{6}}{2\left(-1\right)}
Take the square root of 96.
x=\frac{-14±4\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{6}-14}{-2}
Now solve the equation x=\frac{-14±4\sqrt{6}}{-2} when ± is plus. Add -14 to 4\sqrt{6}.
x=7-2\sqrt{6}
Divide -14+4\sqrt{6} by -2.
x=\frac{-4\sqrt{6}-14}{-2}
Now solve the equation x=\frac{-14±4\sqrt{6}}{-2} when ± is minus. Subtract 4\sqrt{6} from -14.
x=2\sqrt{6}+7
Divide -14-4\sqrt{6} by -2.
x=7-2\sqrt{6} x=2\sqrt{6}+7
The equation is now solved.
7-2\sqrt{6}+\sqrt{4\left(7-2\sqrt{6}\right)}-5=0
Substitute 7-2\sqrt{6} for x in the equation x+\sqrt{4x}-5=0.
0=0
Simplify. The value x=7-2\sqrt{6} satisfies the equation.
2\sqrt{6}+7+\sqrt{4\left(2\sqrt{6}+7\right)}-5=0
Substitute 2\sqrt{6}+7 for x in the equation x+\sqrt{4x}-5=0.
4\times 6^{\frac{1}{2}}+4=0
Simplify. The value x=2\sqrt{6}+7 does not satisfy the equation.
x=7-2\sqrt{6}
Equation \sqrt{4x}=5-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}