Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x^{2}-3}=3-x
Subtract x from both sides of the equation.
\left(\sqrt{x^{2}-3}\right)^{2}=\left(3-x\right)^{2}
Square both sides of the equation.
x^{2}-3=\left(3-x\right)^{2}
Calculate \sqrt{x^{2}-3} to the power of 2 and get x^{2}-3.
x^{2}-3=9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
x^{2}-3+6x=9+x^{2}
Add 6x to both sides.
x^{2}-3+6x-x^{2}=9
Subtract x^{2} from both sides.
-3+6x=9
Combine x^{2} and -x^{2} to get 0.
6x=9+3
Add 3 to both sides.
6x=12
Add 9 and 3 to get 12.
x=\frac{12}{6}
Divide both sides by 6.
x=2
Divide 12 by 6 to get 2.
2+\sqrt{2^{2}-3}=3
Substitute 2 for x in the equation x+\sqrt{x^{2}-3}=3.
3=3
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x^{2}-3}=3-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}