Solve for x
x=\frac{\sqrt{777}}{24}-\frac{9}{8}\approx 0.036446655
x=-\frac{\sqrt{777}}{24}-\frac{9}{8}\approx -2.286446655
Graph
Share
Copied to clipboard
9xx+3=5x\times 9x+9x\times 9
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x.
9x^{2}+3=5x\times 9x+9x\times 9
Multiply x and x to get x^{2}.
9x^{2}+3=5x^{2}\times 9+9x\times 9
Multiply x and x to get x^{2}.
9x^{2}+3=45x^{2}+9x\times 9
Multiply 5 and 9 to get 45.
9x^{2}+3=45x^{2}+81x
Multiply 9 and 9 to get 81.
9x^{2}+3-45x^{2}=81x
Subtract 45x^{2} from both sides.
-36x^{2}+3=81x
Combine 9x^{2} and -45x^{2} to get -36x^{2}.
-36x^{2}+3-81x=0
Subtract 81x from both sides.
-36x^{2}-81x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\left(-36\right)\times 3}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, -81 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-81\right)±\sqrt{6561-4\left(-36\right)\times 3}}{2\left(-36\right)}
Square -81.
x=\frac{-\left(-81\right)±\sqrt{6561+144\times 3}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-\left(-81\right)±\sqrt{6561+432}}{2\left(-36\right)}
Multiply 144 times 3.
x=\frac{-\left(-81\right)±\sqrt{6993}}{2\left(-36\right)}
Add 6561 to 432.
x=\frac{-\left(-81\right)±3\sqrt{777}}{2\left(-36\right)}
Take the square root of 6993.
x=\frac{81±3\sqrt{777}}{2\left(-36\right)}
The opposite of -81 is 81.
x=\frac{81±3\sqrt{777}}{-72}
Multiply 2 times -36.
x=\frac{3\sqrt{777}+81}{-72}
Now solve the equation x=\frac{81±3\sqrt{777}}{-72} when ± is plus. Add 81 to 3\sqrt{777}.
x=-\frac{\sqrt{777}}{24}-\frac{9}{8}
Divide 81+3\sqrt{777} by -72.
x=\frac{81-3\sqrt{777}}{-72}
Now solve the equation x=\frac{81±3\sqrt{777}}{-72} when ± is minus. Subtract 3\sqrt{777} from 81.
x=\frac{\sqrt{777}}{24}-\frac{9}{8}
Divide 81-3\sqrt{777} by -72.
x=-\frac{\sqrt{777}}{24}-\frac{9}{8} x=\frac{\sqrt{777}}{24}-\frac{9}{8}
The equation is now solved.
9xx+3=5x\times 9x+9x\times 9
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x.
9x^{2}+3=5x\times 9x+9x\times 9
Multiply x and x to get x^{2}.
9x^{2}+3=5x^{2}\times 9+9x\times 9
Multiply x and x to get x^{2}.
9x^{2}+3=45x^{2}+9x\times 9
Multiply 5 and 9 to get 45.
9x^{2}+3=45x^{2}+81x
Multiply 9 and 9 to get 81.
9x^{2}+3-45x^{2}=81x
Subtract 45x^{2} from both sides.
-36x^{2}+3=81x
Combine 9x^{2} and -45x^{2} to get -36x^{2}.
-36x^{2}+3-81x=0
Subtract 81x from both sides.
-36x^{2}-81x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{-36x^{2}-81x}{-36}=-\frac{3}{-36}
Divide both sides by -36.
x^{2}+\left(-\frac{81}{-36}\right)x=-\frac{3}{-36}
Dividing by -36 undoes the multiplication by -36.
x^{2}+\frac{9}{4}x=-\frac{3}{-36}
Reduce the fraction \frac{-81}{-36} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{9}{4}x=\frac{1}{12}
Reduce the fraction \frac{-3}{-36} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{9}{4}x+\left(\frac{9}{8}\right)^{2}=\frac{1}{12}+\left(\frac{9}{8}\right)^{2}
Divide \frac{9}{4}, the coefficient of the x term, by 2 to get \frac{9}{8}. Then add the square of \frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{1}{12}+\frac{81}{64}
Square \frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{259}{192}
Add \frac{1}{12} to \frac{81}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{8}\right)^{2}=\frac{259}{192}
Factor x^{2}+\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{8}\right)^{2}}=\sqrt{\frac{259}{192}}
Take the square root of both sides of the equation.
x+\frac{9}{8}=\frac{\sqrt{777}}{24} x+\frac{9}{8}=-\frac{\sqrt{777}}{24}
Simplify.
x=\frac{\sqrt{777}}{24}-\frac{9}{8} x=-\frac{\sqrt{777}}{24}-\frac{9}{8}
Subtract \frac{9}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}