Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3=7x-20
Multiply x and x to get x^{2}.
x^{2}-3-7x=-20
Subtract 7x from both sides.
x^{2}-3-7x+20=0
Add 20 to both sides.
x^{2}+17-7x=0
Add -3 and 20 to get 17.
x^{2}-7x+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 17}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 17}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-68}}{2}
Multiply -4 times 17.
x=\frac{-\left(-7\right)±\sqrt{-19}}{2}
Add 49 to -68.
x=\frac{-\left(-7\right)±\sqrt{19}i}{2}
Take the square root of -19.
x=\frac{7±\sqrt{19}i}{2}
The opposite of -7 is 7.
x=\frac{7+\sqrt{19}i}{2}
Now solve the equation x=\frac{7±\sqrt{19}i}{2} when ± is plus. Add 7 to i\sqrt{19}.
x=\frac{-\sqrt{19}i+7}{2}
Now solve the equation x=\frac{7±\sqrt{19}i}{2} when ± is minus. Subtract i\sqrt{19} from 7.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
The equation is now solved.
x^{2}-3=7x-20
Multiply x and x to get x^{2}.
x^{2}-3-7x=-20
Subtract 7x from both sides.
x^{2}-7x=-20+3
Add 3 to both sides.
x^{2}-7x=-17
Add -20 and 3 to get -17.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-17+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-17+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-\frac{19}{4}
Add -17 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=-\frac{19}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{19}i}{2} x-\frac{7}{2}=-\frac{\sqrt{19}i}{2}
Simplify.
x=\frac{7+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+7}{2}
Add \frac{7}{2} to both sides of the equation.