Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{x\left(6-x_{2}-3x\right)}{x^{2}+3}\text{, }&x\neq -\sqrt{3}i\text{ and }x\neq \sqrt{3}i\text{ and }x\neq 0\\m\in \mathrm{C}\text{, }&\left(x=\sqrt{3}i\text{ and }x_{2}=-3\sqrt{3}i+6\right)\text{ or }\left(x=-\sqrt{3}i\text{ and }x_{2}=6+3\sqrt{3}i\right)\end{matrix}\right.
Solve for m
m=-\frac{x\left(6-x_{2}-3x\right)}{x^{2}+3}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{x_{2}^{2}-12x_{2}-12m^{2}+36m+36}+x_{2}-6}{2\left(m-3\right)}\text{, }&\left(m\neq 3\text{ and }m\neq 0\right)\text{ or }\left(m\neq 3\text{ and }arg(6-x_{2})<\pi \text{ and }x_{2}\neq 6\right)\\x=\frac{\sqrt{x_{2}^{2}-12x_{2}-12m^{2}+36m+36}+x_{2}-6}{2\left(m-3\right)}\text{, }&\left(m\neq 3\text{ and }m\neq 0\right)\text{ or }\left(m\neq 3\text{ and }arg(6-x_{2})\geq \pi \text{ and }x_{2}\neq 6\right)\\x=-\frac{9}{6-x_{2}}\text{, }&m=3\text{ and }x_{2}\neq 6\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{x_{2}^{2}-12x_{2}-12m^{2}+36m+36}+x_{2}-6}{2\left(m-3\right)}\text{, }&\left(-\left(6-x_{2}\right)<0\text{ or }m\neq 0\right)\text{ and }m\neq 3\text{ and }m\geq -\frac{\sqrt{48\left(-\left(6-x_{2}\right)\right)^{2}+1296}}{24}+\frac{3}{2}\text{ and }m\leq \frac{\sqrt{48\left(-\left(6-x_{2}\right)\right)^{2}+1296}}{24}+\frac{3}{2}\text{ and }\left(x_{2}<6\text{ or }m\neq 0\right)\\x=\frac{\sqrt{x_{2}^{2}-12x_{2}-12m^{2}+36m+36}+x_{2}-6}{2\left(m-3\right)}\text{, }&\left(6-x_{2}<0\text{ or }m\neq 0\right)\text{ and }m\neq 3\text{ and }m\geq -\frac{\sqrt{48\left(6-x_{2}\right)^{2}+1296}}{24}+\frac{3}{2}\text{ and }m\leq \frac{\sqrt{48\left(6-x_{2}\right)^{2}+1296}}{24}+\frac{3}{2}\text{ and }\left(x_{2}>6\text{ or }m\neq 0\right)\\x=-\frac{9}{6-x_{2}}\text{, }&m=3\text{ and }x_{2}\neq 6\end{matrix}\right.
Graph
Share
Copied to clipboard
xmx+3m+x=xx_{2}+3xx+x\left(-5\right)
Multiply both sides of the equation by x.
x^{2}m+3m+x=xx_{2}+3xx+x\left(-5\right)
Multiply x and x to get x^{2}.
x^{2}m+3m+x=xx_{2}+3x^{2}+x\left(-5\right)
Multiply x and x to get x^{2}.
x^{2}m+3m=xx_{2}+3x^{2}+x\left(-5\right)-x
Subtract x from both sides.
x^{2}m+3m=xx_{2}+3x^{2}-6x
Combine x\left(-5\right) and -x to get -6x.
\left(x^{2}+3\right)m=xx_{2}+3x^{2}-6x
Combine all terms containing m.
\left(x^{2}+3\right)m=3x^{2}+xx_{2}-6x
The equation is in standard form.
\frac{\left(x^{2}+3\right)m}{x^{2}+3}=\frac{x\left(3x+x_{2}-6\right)}{x^{2}+3}
Divide both sides by x^{2}+3.
m=\frac{x\left(3x+x_{2}-6\right)}{x^{2}+3}
Dividing by x^{2}+3 undoes the multiplication by x^{2}+3.
xmx+3m+x=xx_{2}+3xx+x\left(-5\right)
Multiply both sides of the equation by x.
x^{2}m+3m+x=xx_{2}+3xx+x\left(-5\right)
Multiply x and x to get x^{2}.
x^{2}m+3m+x=xx_{2}+3x^{2}+x\left(-5\right)
Multiply x and x to get x^{2}.
x^{2}m+3m=xx_{2}+3x^{2}+x\left(-5\right)-x
Subtract x from both sides.
x^{2}m+3m=xx_{2}+3x^{2}-6x
Combine x\left(-5\right) and -x to get -6x.
\left(x^{2}+3\right)m=xx_{2}+3x^{2}-6x
Combine all terms containing m.
\left(x^{2}+3\right)m=3x^{2}+xx_{2}-6x
The equation is in standard form.
\frac{\left(x^{2}+3\right)m}{x^{2}+3}=\frac{x\left(3x+x_{2}-6\right)}{x^{2}+3}
Divide both sides by x^{2}+3.
m=\frac{x\left(3x+x_{2}-6\right)}{x^{2}+3}
Dividing by x^{2}+3 undoes the multiplication by x^{2}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}