x d y = ( y + x \cos ^ { 2 } \frac { y } { x } ) d x
Solve for d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2y}{2\pi n_{1}+\pi }\text{ and }y\neq 0\end{matrix}\right.
Share
Copied to clipboard
xdy=\left(yd+x\left(\cos(\frac{y}{x})\right)^{2}d\right)x
Use the distributive property to multiply y+x\left(\cos(\frac{y}{x})\right)^{2} by d.
xdy=ydx+\left(\cos(\frac{y}{x})\right)^{2}dx^{2}
Use the distributive property to multiply yd+x\left(\cos(\frac{y}{x})\right)^{2}d by x.
xdy-ydx=\left(\cos(\frac{y}{x})\right)^{2}dx^{2}
Subtract ydx from both sides.
0=\left(\cos(\frac{y}{x})\right)^{2}dx^{2}
Combine xdy and -ydx to get 0.
\left(\cos(\frac{y}{x})\right)^{2}dx^{2}=0
Swap sides so that all variable terms are on the left hand side.
\left(\cos(\frac{y}{x})\right)^{2}x^{2}d=0
The equation is in standard form.
d=0
Divide 0 by \left(\cos(yx^{-1})\right)^{2}x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}