x d x = - d ( \cos x )
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&2\left(\cos(x)+x^{2}\right)=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\cos(x)+x^{2}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}d=\left(-d\right)\cos(x)
Multiply x and x to get x^{2}.
x^{2}d-\left(-d\right)\cos(x)=0
Subtract \left(-d\right)\cos(x) from both sides.
x^{2}d+d\cos(x)=0
Multiply -1 and -1 to get 1.
\left(x^{2}+\cos(x)\right)d=0
Combine all terms containing d.
\left(\cos(x)+x^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by x^{2}+\cos(x).
x^{2}d=\left(-d\right)\cos(x)
Multiply x and x to get x^{2}.
x^{2}d-\left(-d\right)\cos(x)=0
Subtract \left(-d\right)\cos(x) from both sides.
x^{2}d+d\cos(x)=0
Multiply -1 and -1 to get 1.
\left(x^{2}+\cos(x)\right)d=0
Combine all terms containing d.
\left(\cos(x)+x^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by x^{2}+\cos(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}