x d x + y \cdot d y + \frac { x d y - y d x } { x ^ { 2 } + y ^ { 2 } } = 0
Solve for d (complex solution)
d=0
x\neq iy\text{ and }x\neq -iy
Solve for d
d=0
y\neq 0\text{ or }x\neq 0
Solve for x (complex solution)
x\in \mathrm{C}\setminus iy,-iy
d=0
Solve for x
\left\{\begin{matrix}x\in \mathrm{R}\text{, }&d=0\text{ and }y\neq 0\\x\neq 0\text{, }&d=0\end{matrix}\right.
Share
Copied to clipboard
xdx\left(x-iy\right)\left(x+iy\right)+ydy\left(x-iy\right)\left(x+iy\right)+xdy-ydx=0
Multiply both sides of the equation by \left(x-iy\right)\left(x+iy\right).
x^{2}d\left(x-iy\right)\left(x+iy\right)+ydy\left(x-iy\right)\left(x+iy\right)+xdy-ydx=0
Multiply x and x to get x^{2}.
x^{2}d\left(x-iy\right)\left(x+iy\right)+y^{2}d\left(x-iy\right)\left(x+iy\right)+xdy-ydx=0
Multiply y and y to get y^{2}.
\left(dx^{3}-ix^{2}dy\right)\left(x+iy\right)+y^{2}d\left(x-iy\right)\left(x+iy\right)+xdy-ydx=0
Use the distributive property to multiply x^{2}d by x-iy.
dx^{4}+dx^{2}y^{2}+y^{2}d\left(x-iy\right)\left(x+iy\right)+xdy-ydx=0
Use the distributive property to multiply dx^{3}-ix^{2}dy by x+iy and combine like terms.
dx^{4}+dx^{2}y^{2}+\left(y^{2}dx-idy^{3}\right)\left(x+iy\right)+xdy-ydx=0
Use the distributive property to multiply y^{2}d by x-iy.
dx^{4}+dx^{2}y^{2}+y^{2}dx^{2}+dy^{4}+xdy-ydx=0
Use the distributive property to multiply y^{2}dx-idy^{3} by x+iy and combine like terms.
dx^{4}+2dx^{2}y^{2}+dy^{4}+xdy-ydx=0
Combine dx^{2}y^{2} and y^{2}dx^{2} to get 2dx^{2}y^{2}.
dx^{4}+2dx^{2}y^{2}+dy^{4}+0=0
Combine xdy and -ydx to get 0.
dx^{4}+2dx^{2}y^{2}+dy^{4}=0
Anything plus zero gives itself.
\left(x^{4}+2x^{2}y^{2}+y^{4}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by x^{4}+2x^{2}y^{2}+y^{4}.
xdx\left(x^{2}+y^{2}\right)+ydy\left(x^{2}+y^{2}\right)+xdy-ydx=0
Multiply both sides of the equation by x^{2}+y^{2}.
x^{2}d\left(x^{2}+y^{2}\right)+ydy\left(x^{2}+y^{2}\right)+xdy-ydx=0
Multiply x and x to get x^{2}.
x^{2}d\left(x^{2}+y^{2}\right)+y^{2}d\left(x^{2}+y^{2}\right)+xdy-ydx=0
Multiply y and y to get y^{2}.
dx^{4}+x^{2}dy^{2}+y^{2}d\left(x^{2}+y^{2}\right)+xdy-ydx=0
Use the distributive property to multiply x^{2}d by x^{2}+y^{2}.
dx^{4}+x^{2}dy^{2}+y^{2}dx^{2}+dy^{4}+xdy-ydx=0
Use the distributive property to multiply y^{2}d by x^{2}+y^{2}.
dx^{4}+2x^{2}dy^{2}+dy^{4}+xdy-ydx=0
Combine x^{2}dy^{2} and y^{2}dx^{2} to get 2x^{2}dy^{2}.
dx^{4}+2x^{2}dy^{2}+dy^{4}+0=0
Combine xdy and -ydx to get 0.
dx^{4}+2x^{2}dy^{2}+dy^{4}=0
Anything plus zero gives itself.
\left(x^{4}+2x^{2}y^{2}+y^{4}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by x^{4}+2x^{2}y^{2}+y^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}