Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{2\left(5b-62\right)}{x+5}\text{, }&x\neq -5\\a\in \mathrm{C}\text{, }&b=\frac{62}{5}\text{ and }x=-5\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{2\left(5b-62\right)}{x+5}\text{, }&x\neq -5\\a\in \mathrm{R}\text{, }&b=\frac{62}{5}\text{ and }x=-5\end{matrix}\right.
Solve for b
b=-\frac{ax}{10}-\frac{a}{2}+\frac{62}{5}
Graph
Share
Copied to clipboard
xa+5a+10b=124
Use the distributive property to multiply 5 by a+2b.
xa+5a=124-10b
Subtract 10b from both sides.
\left(x+5\right)a=124-10b
Combine all terms containing a.
\frac{\left(x+5\right)a}{x+5}=\frac{124-10b}{x+5}
Divide both sides by x+5.
a=\frac{124-10b}{x+5}
Dividing by x+5 undoes the multiplication by x+5.
a=\frac{2\left(62-5b\right)}{x+5}
Divide 124-10b by x+5.
xa+5a+10b=124
Use the distributive property to multiply 5 by a+2b.
xa+5a=124-10b
Subtract 10b from both sides.
\left(x+5\right)a=124-10b
Combine all terms containing a.
\frac{\left(x+5\right)a}{x+5}=\frac{124-10b}{x+5}
Divide both sides by x+5.
a=\frac{124-10b}{x+5}
Dividing by x+5 undoes the multiplication by x+5.
a=\frac{2\left(62-5b\right)}{x+5}
Divide 124-10b by x+5.
xa+5a+10b=124
Use the distributive property to multiply 5 by a+2b.
5a+10b=124-xa
Subtract xa from both sides.
10b=124-xa-5a
Subtract 5a from both sides.
10b=124-5a-ax
The equation is in standard form.
\frac{10b}{10}=\frac{124-5a-ax}{10}
Divide both sides by 10.
b=\frac{124-5a-ax}{10}
Dividing by 10 undoes the multiplication by 10.
b=-\frac{ax}{10}-\frac{a}{2}+\frac{62}{5}
Divide 124-xa-5a by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}