Solve for x_r
x_{r}=\frac{1}{2}=0.5
Assign x_r
x_{r}≔\frac{1}{2}
Share
Copied to clipboard
x_{r}=\frac{2+\frac{-4}{3}}{1+\frac{1}{3}}
Multiply \frac{1}{3} and -4 to get \frac{-4}{3}.
x_{r}=\frac{2-\frac{4}{3}}{1+\frac{1}{3}}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
x_{r}=\frac{\frac{6}{3}-\frac{4}{3}}{1+\frac{1}{3}}
Convert 2 to fraction \frac{6}{3}.
x_{r}=\frac{\frac{6-4}{3}}{1+\frac{1}{3}}
Since \frac{6}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
x_{r}=\frac{\frac{2}{3}}{1+\frac{1}{3}}
Subtract 4 from 6 to get 2.
x_{r}=\frac{\frac{2}{3}}{\frac{3}{3}+\frac{1}{3}}
Convert 1 to fraction \frac{3}{3}.
x_{r}=\frac{\frac{2}{3}}{\frac{3+1}{3}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
x_{r}=\frac{\frac{2}{3}}{\frac{4}{3}}
Add 3 and 1 to get 4.
x_{r}=\frac{2}{3}\times \frac{3}{4}
Divide \frac{2}{3} by \frac{4}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{4}{3}.
x_{r}=\frac{2\times 3}{3\times 4}
Multiply \frac{2}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x_{r}=\frac{2}{4}
Cancel out 3 in both numerator and denominator.
x_{r}=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}