Solve for x
x=2x_{n}-1
Solve for x_n
x_{n}=\frac{x+1}{2}
Graph
Share
Copied to clipboard
x_{n}+1=2x_{n}-x+x_{n}
To find the opposite of x-x_{n}, find the opposite of each term.
x_{n}+1=3x_{n}-x
Combine 2x_{n} and x_{n} to get 3x_{n}.
3x_{n}-x=x_{n}+1
Swap sides so that all variable terms are on the left hand side.
-x=x_{n}+1-3x_{n}
Subtract 3x_{n} from both sides.
-x=-2x_{n}+1
Combine x_{n} and -3x_{n} to get -2x_{n}.
-x=1-2x_{n}
The equation is in standard form.
\frac{-x}{-1}=\frac{1-2x_{n}}{-1}
Divide both sides by -1.
x=\frac{1-2x_{n}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=2x_{n}-1
Divide -2x_{n}+1 by -1.
x_{n}+1=2x_{n}-x+x_{n}
To find the opposite of x-x_{n}, find the opposite of each term.
x_{n}+1=3x_{n}-x
Combine 2x_{n} and x_{n} to get 3x_{n}.
x_{n}+1-3x_{n}=-x
Subtract 3x_{n} from both sides.
-2x_{n}+1=-x
Combine x_{n} and -3x_{n} to get -2x_{n}.
-2x_{n}=-x-1
Subtract 1 from both sides.
\frac{-2x_{n}}{-2}=\frac{-x-1}{-2}
Divide both sides by -2.
x_{n}=\frac{-x-1}{-2}
Dividing by -2 undoes the multiplication by -2.
x_{n}=\frac{x+1}{2}
Divide -x-1 by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}