Solve for k_D
\left\{\begin{matrix}k_{D}=\frac{T_{1}x_{a}e^{-\frac{t}{T_{1}}}}{x_{e}}\text{, }&x_{e}\neq 0\text{ and }T_{1}\neq 0\\k_{D}\in \mathrm{R}\text{, }&x_{a}=0\text{ and }x_{e}=0\text{ and }T_{1}\neq 0\end{matrix}\right.
Share
Copied to clipboard
x_{a}T_{1}=x_{e}k_{D}\times 1e^{\frac{t}{T_{1}}}
Multiply both sides of the equation by T_{1}.
x_{e}k_{D}\times 1e^{\frac{t}{T_{1}}}=x_{a}T_{1}
Swap sides so that all variable terms are on the left hand side.
k_{D}x_{e}e^{\frac{t}{T_{1}}}=T_{1}x_{a}
Reorder the terms.
x_{e}e^{\frac{t}{T_{1}}}k_{D}=T_{1}x_{a}
The equation is in standard form.
\frac{x_{e}e^{\frac{t}{T_{1}}}k_{D}}{x_{e}e^{\frac{t}{T_{1}}}}=\frac{T_{1}x_{a}}{x_{e}e^{\frac{t}{T_{1}}}}
Divide both sides by x_{e}e^{tT_{1}^{-1}}.
k_{D}=\frac{T_{1}x_{a}}{x_{e}e^{\frac{t}{T_{1}}}}
Dividing by x_{e}e^{tT_{1}^{-1}} undoes the multiplication by x_{e}e^{tT_{1}^{-1}}.
k_{D}=\frac{T_{1}x_{a}e^{-\frac{t}{T_{1}}}}{x_{e}}
Divide T_{1}x_{a} by x_{e}e^{tT_{1}^{-1}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}