Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for x_0 (complex solution)
Tick mark Image
Solve for x_0
Tick mark Image

Similar Problems from Web Search

Share

x_{1}^{3}-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+a\left(x_{1}-x_{0}\right)=0
To find the opposite of x_{1}^{2}-x_{0}^{2}, find the opposite of each term.
x_{1}^{3}-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=0
Use the distributive property to multiply a by x_{1}-x_{0}.
-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}
Subtract x_{1}^{3} from both sides. Anything subtracted from zero gives its negation.
-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}
Add x_{0}^{3} to both sides.
x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}
Add x_{1}^{2} to both sides.
ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}-x_{0}^{2}
Subtract x_{0}^{2} from both sides.
\left(x_{1}-x_{0}\right)a=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}-x_{0}^{2}
Combine all terms containing a.
\left(x_{1}-x_{0}\right)a=x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}
The equation is in standard form.
\frac{\left(x_{1}-x_{0}\right)a}{x_{1}-x_{0}}=\frac{x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}}{x_{1}-x_{0}}
Divide both sides by x_{1}-x_{0}.
a=\frac{x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}}{x_{1}-x_{0}}
Dividing by x_{1}-x_{0} undoes the multiplication by x_{1}-x_{0}.
a=x_{1}-x_{1}^{2}+x_{0}-x_{0}x_{1}-x_{0}^{2}
Divide -x_{0}^{2}+x_{0}^{3}+x_{1}^{2}-x_{1}^{3} by x_{1}-x_{0}.
x_{1}^{3}-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+a\left(x_{1}-x_{0}\right)=0
To find the opposite of x_{1}^{2}-x_{0}^{2}, find the opposite of each term.
x_{1}^{3}-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=0
Use the distributive property to multiply a by x_{1}-x_{0}.
-x_{0}^{3}-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}
Subtract x_{1}^{3} from both sides. Anything subtracted from zero gives its negation.
-x_{1}^{2}+x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}
Add x_{0}^{3} to both sides.
x_{0}^{2}+ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}
Add x_{1}^{2} to both sides.
ax_{1}-ax_{0}=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}-x_{0}^{2}
Subtract x_{0}^{2} from both sides.
\left(x_{1}-x_{0}\right)a=-x_{1}^{3}+x_{0}^{3}+x_{1}^{2}-x_{0}^{2}
Combine all terms containing a.
\left(x_{1}-x_{0}\right)a=x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}
The equation is in standard form.
\frac{\left(x_{1}-x_{0}\right)a}{x_{1}-x_{0}}=\frac{x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}}{x_{1}-x_{0}}
Divide both sides by x_{1}-x_{0}.
a=\frac{x_{0}^{3}-x_{0}^{2}-x_{1}^{3}+x_{1}^{2}}{x_{1}-x_{0}}
Dividing by x_{1}-x_{0} undoes the multiplication by x_{1}-x_{0}.
a=x_{1}-x_{1}^{2}+x_{0}-x_{0}x_{1}-x_{0}^{2}
Divide -x_{0}^{2}+x_{0}^{3}+x_{1}^{2}-x_{1}^{3} by x_{1}-x_{0}.