Solve for x_2
x_{2}=\frac{7x_{1}}{8}-\frac{47}{4}
Solve for x_1
x_{1}=\frac{8x_{2}+94}{7}
Share
Copied to clipboard
x_{1}=\frac{94}{7}+\frac{8}{7}x_{2}
Divide each term of 94+8x_{2} by 7 to get \frac{94}{7}+\frac{8}{7}x_{2}.
\frac{94}{7}+\frac{8}{7}x_{2}=x_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{8}{7}x_{2}=x_{1}-\frac{94}{7}
Subtract \frac{94}{7} from both sides.
\frac{\frac{8}{7}x_{2}}{\frac{8}{7}}=\frac{x_{1}-\frac{94}{7}}{\frac{8}{7}}
Divide both sides of the equation by \frac{8}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{2}=\frac{x_{1}-\frac{94}{7}}{\frac{8}{7}}
Dividing by \frac{8}{7} undoes the multiplication by \frac{8}{7}.
x_{2}=\frac{7x_{1}}{8}-\frac{47}{4}
Divide x_{1}-\frac{94}{7} by \frac{8}{7} by multiplying x_{1}-\frac{94}{7} by the reciprocal of \frac{8}{7}.
x_{1}=\frac{94}{7}+\frac{8}{7}x_{2}
Divide each term of 94+8x_{2} by 7 to get \frac{94}{7}+\frac{8}{7}x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}