Solve for a
a=-4x_{1}-223
Solve for x_1
x_{1}=\frac{-a-223}{4}
Share
Copied to clipboard
x_{1}=\frac{-a-223}{4}
Multiply 2 and 2 to get 4.
\frac{-a-223}{4}=x_{1}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{4}a-\frac{223}{4}=x_{1}
Divide each term of -a-223 by 4 to get -\frac{1}{4}a-\frac{223}{4}.
-\frac{1}{4}a=x_{1}+\frac{223}{4}
Add \frac{223}{4} to both sides.
\frac{-\frac{1}{4}a}{-\frac{1}{4}}=\frac{x_{1}+\frac{223}{4}}{-\frac{1}{4}}
Multiply both sides by -4.
a=\frac{x_{1}+\frac{223}{4}}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
a=-4x_{1}-223
Divide x_{1}+\frac{223}{4} by -\frac{1}{4} by multiplying x_{1}+\frac{223}{4} by the reciprocal of -\frac{1}{4}.
x_{1}=\frac{-a-223}{4}
Multiply 2 and 2 to get 4.
x_{1}=-\frac{1}{4}a-\frac{223}{4}
Divide each term of -a-223 by 4 to get -\frac{1}{4}a-\frac{223}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}