Solve for x_1
x_{1} = -\frac{131640}{1183} = -111\frac{327}{1183} \approx -111.276415892
Assign x_1
x_{1}≔-\frac{131640}{1183}
Share
Copied to clipboard
x_{1}=\frac{-\frac{65}{91}+\frac{8841}{91}}{\frac{1-14}{15}}
Least common multiple of 7 and 13 is 91. Convert -\frac{5}{7} and \frac{1263}{13} to fractions with denominator 91.
x_{1}=\frac{\frac{-65+8841}{91}}{\frac{1-14}{15}}
Since -\frac{65}{91} and \frac{8841}{91} have the same denominator, add them by adding their numerators.
x_{1}=\frac{\frac{8776}{91}}{\frac{1-14}{15}}
Add -65 and 8841 to get 8776.
x_{1}=\frac{\frac{8776}{91}}{\frac{-13}{15}}
Subtract 14 from 1 to get -13.
x_{1}=\frac{\frac{8776}{91}}{-\frac{13}{15}}
Fraction \frac{-13}{15} can be rewritten as -\frac{13}{15} by extracting the negative sign.
x_{1}=\frac{8776}{91}\left(-\frac{15}{13}\right)
Divide \frac{8776}{91} by -\frac{13}{15} by multiplying \frac{8776}{91} by the reciprocal of -\frac{13}{15}.
x_{1}=\frac{8776\left(-15\right)}{91\times 13}
Multiply \frac{8776}{91} times -\frac{15}{13} by multiplying numerator times numerator and denominator times denominator.
x_{1}=\frac{-131640}{1183}
Do the multiplications in the fraction \frac{8776\left(-15\right)}{91\times 13}.
x_{1}=-\frac{131640}{1183}
Fraction \frac{-131640}{1183} can be rewritten as -\frac{131640}{1183} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}