Solve for B
B=\frac{\sqrt{70}}{7x}
x\neq 0
Solve for x
x=\frac{\sqrt{70}}{7B}
B\neq 0
Graph
Share
Copied to clipboard
xB=\frac{\sqrt{10}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{10}{7}} as the division of square roots \frac{\sqrt{10}}{\sqrt{7}}.
xB=\frac{\sqrt{10}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
xB=\frac{\sqrt{10}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
xB=\frac{\sqrt{70}}{7}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
7xB=\sqrt{70}
Multiply both sides of the equation by 7.
\frac{7xB}{7x}=\frac{\sqrt{70}}{7x}
Divide both sides by 7x.
B=\frac{\sqrt{70}}{7x}
Dividing by 7x undoes the multiplication by 7x.
xB=\frac{\sqrt{10}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{10}{7}} as the division of square roots \frac{\sqrt{10}}{\sqrt{7}}.
xB=\frac{\sqrt{10}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
xB=\frac{\sqrt{10}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
xB=\frac{\sqrt{70}}{7}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
7xB=\sqrt{70}
Multiply both sides of the equation by 7.
7Bx=\sqrt{70}
The equation is in standard form.
\frac{7Bx}{7B}=\frac{\sqrt{70}}{7B}
Divide both sides by 7B.
x=\frac{\sqrt{70}}{7B}
Dividing by 7B undoes the multiplication by 7B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}