x - y = ( 16 \cdot ( x - y ) + 2 ]
Solve for x
x = -\frac{2}{15} = -0.13333333333333333
Solve for y
y = \frac{2}{15} = 0.13333333333333333
Graph
Share
Copied to clipboard
x-y=16x-16y+2
Use the distributive property to multiply 16 by x-y.
x-y-16x=-16y+2
Subtract 16x from both sides.
-15x-y=-16y+2
Combine x and -16x to get -15x.
-15x=-16y+2+y
Add y to both sides.
-15x=-15y+2
Combine -16y and y to get -15y.
-15x=2-15y
The equation is in standard form.
\frac{-15x}{-15}=\frac{2-15y}{-15}
Divide both sides by -15.
x=\frac{2-15y}{-15}
Dividing by -15 undoes the multiplication by -15.
x=y-\frac{2}{15}
Divide -15y+2 by -15.
x-y=16x-16y+2
Use the distributive property to multiply 16 by x-y.
x-y+16y=16x+2
Add 16y to both sides.
x+15y=16x+2
Combine -y and 16y to get 15y.
15y=16x+2-x
Subtract x from both sides.
15y=15x+2
Combine 16x and -x to get 15x.
\frac{15y}{15}=\frac{15x+2}{15}
Divide both sides by 15.
y=\frac{15x+2}{15}
Dividing by 15 undoes the multiplication by 15.
y=x+\frac{2}{15}
Divide 15x+2 by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}