Solve for n
n=m\left(x-m+1\right)+x
m\neq 0
Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{\sqrt{x^{2}+6x-4n+1}+x+1}{2}\text{, }&\left(n\neq -1\text{ and }arg(n+1)<\pi \right)\text{ or }x\neq n\\m=\frac{-\sqrt{x^{2}+6x-4n+1}+x+1}{2}\text{, }&\left(n\neq -1\text{ and }arg(n+1)\geq \pi \right)\text{ or }x\neq n\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{\sqrt{x^{2}+6x-4n+1}+x+1}{2}\text{, }&\left(x\neq n\text{ and }x\geq 2\sqrt{n+2}-3\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\text{ and }n\geq -2\right)\text{ or }\left(x\neq n\text{ and }x\leq -2\sqrt{n+2}-3\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\text{ and }n\geq -2\right)\text{ or }\left(n>-1\text{ and }x\geq 2\sqrt{n+2}-3\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\right)\text{ or }\left(n>-1\text{ and }x\leq -2\sqrt{n+2}-3\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\right)\text{ or }\left(x\neq n\text{ and }n\leq -2\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\right)\\m=\frac{-\sqrt{x^{2}+6x-4n+1}+x+1}{2}\text{, }&\left(x\neq n\text{ or }n<-1\right)\text{ and }\left(n\leq -2\text{ or }x\leq -2\sqrt{n+2}-3\text{ or }x\geq 2\sqrt{n+2}-3\right)\text{ and }n\leq \frac{x^{2}}{4}+\frac{3x}{2}+\frac{1}{4}\text{ and }\left(x\geq 2\sqrt{n+2}-3\text{ or }x\neq n\text{ or }n<-1\right)\text{ and }\left(x\geq 2\sqrt{n+2}-3\text{ or }x\leq -2\sqrt{n+2}-3\text{ or }n\leq -2\text{ or }x\neq n\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
mx-mm=m\times 2-\left(x-n\right)+m\left(-3\right)
Multiply both sides of the equation by m.
mx-m^{2}=m\times 2-\left(x-n\right)+m\left(-3\right)
Multiply m and m to get m^{2}.
mx-m^{2}=m\times 2-x+n+m\left(-3\right)
To find the opposite of x-n, find the opposite of each term.
mx-m^{2}=-m-x+n
Combine m\times 2 and m\left(-3\right) to get -m.
-m-x+n=mx-m^{2}
Swap sides so that all variable terms are on the left hand side.
-x+n=mx-m^{2}+m
Add m to both sides.
n=mx-m^{2}+m+x
Add x to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}