Solve for d
d=x-9
Solve for x
x=d+9
Graph
Share
Copied to clipboard
x-d+16=12+13
The opposite of -16 is 16.
x-d+16=25
Add 12 and 13 to get 25.
-d+16=25-x
Subtract x from both sides.
-d=25-x-16
Subtract 16 from both sides.
-d=9-x
Subtract 16 from 25 to get 9.
\frac{-d}{-1}=\frac{9-x}{-1}
Divide both sides by -1.
d=\frac{9-x}{-1}
Dividing by -1 undoes the multiplication by -1.
d=x-9
Divide 9-x by -1.
x-d+16=12+13
The opposite of -16 is 16.
x-d+16=25
Add 12 and 13 to get 25.
x+16=25+d
Add d to both sides.
x=25+d-16
Subtract 16 from both sides.
x=9+d
Subtract 16 from 25 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}