Solve for a
a=-x\left(c+b-x\right)
x\neq 0
Solve for b
b=x-c-\frac{a}{x}
x\neq 0
Graph
Share
Copied to clipboard
xx-a-bx=cx
Multiply both sides of the equation by x.
x^{2}-a-bx=cx
Multiply x and x to get x^{2}.
-a-bx=cx-x^{2}
Subtract x^{2} from both sides.
-a=cx-x^{2}+bx
Add bx to both sides.
-a=cx+bx-x^{2}
The equation is in standard form.
\frac{-a}{-1}=\frac{x\left(c+b-x\right)}{-1}
Divide both sides by -1.
a=\frac{x\left(c+b-x\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
a=-x\left(c+b-x\right)
Divide x\left(c-x+b\right) by -1.
xx-a-bx=cx
Multiply both sides of the equation by x.
x^{2}-a-bx=cx
Multiply x and x to get x^{2}.
-a-bx=cx-x^{2}
Subtract x^{2} from both sides.
-bx=cx-x^{2}+a
Add a to both sides.
\left(-x\right)b=a+cx-x^{2}
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=\frac{a+cx-x^{2}}{-x}
Divide both sides by -x.
b=\frac{a+cx-x^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
b=x-c-\frac{a}{x}
Divide cx-x^{2}+a by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}