Solve for a (complex solution)
\left\{\begin{matrix}\\a=2\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=2\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=2\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=2\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=2\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=2\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=2\end{matrix}\right.
Graph
Share
Copied to clipboard
x-a+2=2ax-3a-3x-2\left(a-5\right)
Use the distributive property to multiply -3 by a+x.
x-a+2=2ax-3a-3x-2a+10
Use the distributive property to multiply -2 by a-5.
x-a+2=2ax-5a-3x+10
Combine -3a and -2a to get -5a.
x-a+2-2ax=-5a-3x+10
Subtract 2ax from both sides.
x-a+2-2ax+5a=-3x+10
Add 5a to both sides.
x+4a+2-2ax=-3x+10
Combine -a and 5a to get 4a.
4a+2-2ax=-3x+10-x
Subtract x from both sides.
4a+2-2ax=-4x+10
Combine -3x and -x to get -4x.
4a-2ax=-4x+10-2
Subtract 2 from both sides.
4a-2ax=-4x+8
Subtract 2 from 10 to get 8.
\left(4-2x\right)a=-4x+8
Combine all terms containing a.
\left(4-2x\right)a=8-4x
The equation is in standard form.
\frac{\left(4-2x\right)a}{4-2x}=\frac{8-4x}{4-2x}
Divide both sides by 4-2x.
a=\frac{8-4x}{4-2x}
Dividing by 4-2x undoes the multiplication by 4-2x.
a=2
Divide -4x+8 by 4-2x.
x-a+2=2ax-3a-3x-2\left(a-5\right)
Use the distributive property to multiply -3 by a+x.
x-a+2=2ax-3a-3x-2a+10
Use the distributive property to multiply -2 by a-5.
x-a+2=2ax-5a-3x+10
Combine -3a and -2a to get -5a.
x-a+2-2ax=-5a-3x+10
Subtract 2ax from both sides.
x-a+2-2ax+3x=-5a+10
Add 3x to both sides.
4x-a+2-2ax=-5a+10
Combine x and 3x to get 4x.
4x+2-2ax=-5a+10+a
Add a to both sides.
4x+2-2ax=-4a+10
Combine -5a and a to get -4a.
4x-2ax=-4a+10-2
Subtract 2 from both sides.
4x-2ax=-4a+8
Subtract 2 from 10 to get 8.
\left(4-2a\right)x=-4a+8
Combine all terms containing x.
\left(4-2a\right)x=8-4a
The equation is in standard form.
\frac{\left(4-2a\right)x}{4-2a}=\frac{8-4a}{4-2a}
Divide both sides by 4-2a.
x=\frac{8-4a}{4-2a}
Dividing by 4-2a undoes the multiplication by 4-2a.
x=2
Divide -4a+8 by 4-2a.
x-a+2=2ax-3a-3x-2\left(a-5\right)
Use the distributive property to multiply -3 by a+x.
x-a+2=2ax-3a-3x-2a+10
Use the distributive property to multiply -2 by a-5.
x-a+2=2ax-5a-3x+10
Combine -3a and -2a to get -5a.
x-a+2-2ax=-5a-3x+10
Subtract 2ax from both sides.
x-a+2-2ax+5a=-3x+10
Add 5a to both sides.
x+4a+2-2ax=-3x+10
Combine -a and 5a to get 4a.
4a+2-2ax=-3x+10-x
Subtract x from both sides.
4a+2-2ax=-4x+10
Combine -3x and -x to get -4x.
4a-2ax=-4x+10-2
Subtract 2 from both sides.
4a-2ax=-4x+8
Subtract 2 from 10 to get 8.
\left(4-2x\right)a=-4x+8
Combine all terms containing a.
\left(4-2x\right)a=8-4x
The equation is in standard form.
\frac{\left(4-2x\right)a}{4-2x}=\frac{8-4x}{4-2x}
Divide both sides by 4-2x.
a=\frac{8-4x}{4-2x}
Dividing by 4-2x undoes the multiplication by 4-2x.
a=2
Divide -4x+8 by 4-2x.
x-a+2=2ax-3a-3x-2\left(a-5\right)
Use the distributive property to multiply -3 by a+x.
x-a+2=2ax-3a-3x-2a+10
Use the distributive property to multiply -2 by a-5.
x-a+2=2ax-5a-3x+10
Combine -3a and -2a to get -5a.
x-a+2-2ax=-5a-3x+10
Subtract 2ax from both sides.
x-a+2-2ax+3x=-5a+10
Add 3x to both sides.
4x-a+2-2ax=-5a+10
Combine x and 3x to get 4x.
4x+2-2ax=-5a+10+a
Add a to both sides.
4x+2-2ax=-4a+10
Combine -5a and a to get -4a.
4x-2ax=-4a+10-2
Subtract 2 from both sides.
4x-2ax=-4a+8
Subtract 2 from 10 to get 8.
\left(4-2a\right)x=-4a+8
Combine all terms containing x.
\left(4-2a\right)x=8-4a
The equation is in standard form.
\frac{\left(4-2a\right)x}{4-2a}=\frac{8-4a}{4-2a}
Divide both sides by 4-2a.
x=\frac{8-4a}{4-2a}
Dividing by 4-2a undoes the multiplication by 4-2a.
x=2
Divide -4a+8 by 4-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}